Work is equal to the force applied times the displacement. Since you pull the wagon at constant speed this means that there is no acceleration on the wagon as it does not change speed. F=ma. Since a=0, F=0. Therefore no work has been done in this situation
Great question !
The rate at which an object covers distance, without worrying
about the direction it's moving, is the object's SPEED .
When the direction is also given, then you have the object's VELOCITY.
This question is important. It gives us a chance to point out that
"velocity" is not just a fancy word for speed that you use when you
want to sound smart. There's actually an important difference between
'speed' and 'velocity'.
Answer:
3.83 m/s
Explanation:
Given that,
Distance covered by Jan, d = 4 miles
1 mile = 1609.34 m
4 miles = 6437.38 m
Time, t = 28 minutes = 1680 s
Jan's average speed,
v = d/t

Hence, the average velocity of Jan is 3.83 m/s.
Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.
This led to Kepler's law of orbital motion.
First Law: Planetary orbits are elliptical with the sun at a focus.
Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.
Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.
It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.