When a material is found to be in the tertiary phase of creep, the following procedure should be implemented that is the component should be replaced immediately. Therefore, Option C is correct.
<h3>What do you mean by a tertiary degree of creep?</h3>
Tertiary Creep has an extended creep rate and terminates when the material breaks or ruptures. It is related to each necking and formation of grain boundary voids. The wide variety of possible stress-temperature- time combos is infinite.
Therefore, When a material is found to be in the tertiary phase of creep, the following procedure should be implemented that is the component should be replaced immediately. Option C is correct.
Learn more about creep:
brainly.com/question/10565749
#SPJ1
Determine whether w is in the span of the given vectors v1; v2; : : : vn
. If your answer is yes, write w as a linear combination of the vectors v1; v2; : : : vn and enter the coefficients as entries of the matrix as instructed is given below
Explanation:
1.Vector to be in the span means means that it contain every element of said vector space it spans. So if a set of vectors A spans the vector space B, you can use linear combinations of the vectors in A to generate any vector in B because every vector in B is within the span of the vectors in A.
2.And thus v3 is in Span{v1, v2}. On the other hand, IF all solutions have c3 = 0, then for the same reason we may never write v3 as a sum of v1, v2 with weights. Thus, v3 is NOT in Span{v1, v2}.
3.In the theory of vector spaces, a set of vectors is said to be linearly dependent if at least one of the vectors in the set can be defined as a linear combination of the others; if no vector in the set can be written in this way, then the vectors are said to be linearly independent.
4.Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent.
Answer:
The Debye temperature for aluminum is 375.2361 K
Explanation:
Molecular weight of aluminum=26.98 g/mol
T=15 K
The mathematical equation for the specific heat and the absolute temperature is:

Substituting in the expression of the question:


Here

Replacing:

Answer: B. thermocouple measures temperatures at the tip and the thermistor at the dimple.
Explanation:
A thermistor is a temperature-sensitive resistor, whilst a thermocouple generates a voltage proportional to the temperature. Thermocouples can work at much higher temperatures than thermistors. They are commonly used for temperature control in heating systems.