Answer:
Explained
Explanation:
This situation can occur because of various factors such as:
- Gradual deterioration of lubrication and coolant.
- change of environmental condition such as temperature, humidity, moisture, etc.
- Change in the properties of incoming raw material
- An increase or decrease in the temperature of the heat treating operation
- Debris interfering with the manufacturing process.
Answer:
The radius of a wind turbine is 691.1 ft
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Explanation:
Given;
power generation potential (PGP) = 1000 kW
Wind speed = 5 mph = 2.2352 m/s
Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³
Radius of the wind turbine r = ?
Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²
Wind energy per unit mass of air = 2.517 J/kg
PGP = mass flow rate * energy per unit mass
PGP = ρ*A*V*e

r = 210.64 m = 691.1 ft
Thus, the radius of a wind turbine is 691.1 ft
PGP = CVᵃ
For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)
Let C = 0.4
PGP = Cvᵃ
take log of both sides
ln(PGP) = a*ln(CV)
a = ln(PGP)/ln(CV)
a = ln(1000)/ln(0.4 *2.2352) = 7.73
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer:
A
Explanation:
He should get a job in engineering to see what it's like to work in the field.