1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
11

The given family of functions is the general solution of the differential equation on the indicated interval.Find a member of th

e family that is a solution of the initial-value problem.
y=c1+c2cosx+c3sinx,(−[infinity],[infinity]) y=c 1 +c 2 cosx+c 3 sinx,(−[infinity],[infinity])
y'''+y′=0,y(π)=0,y′(π)=2,y''(π)=−1 y +y =0,y(π)=0,y ′ (π)=2,y ′′ (π)=−1
Engineering
1 answer:
Alja [10]3 years ago
5 0

Answer:

Explanation:

y'''+y=0---(i)

General solution

y=c_1e^o^x+c_2\cos x +c_3 \sin x\\\\\Rightarrow y=c_1+c_2 \cos x+c_3 \sin x---(ii)\\\\y(\pi)=0\\\\\Rightarrow 0=c_1+c_2\cos (\pi)+c_3\sin (\pi)\\\\\Rightarrow c_1-c_2=0\\\\c_1=c_2---(iii)

y'=-c_2\cos x+c_3\cosx\\\\y'(\pi)=2\\\\\Rightarrow2=-c_2\sin(\pi)+c_3\cos(\pi)\\\\\Rightarrow-c_2(0)+c_3(-1)=2\\\\\Rightarrow c_3=-2\\\\y''-c_2\cos x -c_3\sin x\\\\y''(\pi)=-1\\\\\Rightarrow-1=-c_2 \cos (\pi)=c_3\sin(\pi)\\\\\Rightarrow-1=c_2-0\\\\\Rightarrow c_2=-1

in equation (iii)

c_1=c_2=-1

Therefore,

\large\boxed{y=-1-\cos x-2\sin x}

You might be interested in
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
Sergio [31]

Answer:

the final temperature is 77.1 °C

Explanation:

Given the data in the question;

Initial temperature; T₁ = 27°C = ( 27 + 273)K = 300 K

Initial absolute pressure P₁ = 300 kPa = ( 300 + 101.325 )kPa = 401.325 kPa

Final absolute pressure P₂ = 367 kPa = ( 367 + 101.325 )kPa = 468.325 kPa

Now, to calculate the final temperature, we use the ideal gas equation;

P₁V/T₁ = P₂V/T₂

but it is mentioned that the rigid tank is closed,

so the volume is the same both before and after.

Change in volume = 0

hence;

P₁/T₁ = P₂/T₂

we substitute

401.325 kPa / 300 K = 468.325 kPa / T₂

T₂ × 401.325 kPa  = 300 K × 468.325 kPa

T₂ = [ 300 K × 468.325 kPa ] / 401.325 kPa

T₂ = 140497.5 K / 401.325

T₂ =  350.08 K

T₂ = ( 350.08 - 273 ) °C

T₂ = 77.1 °C

Therefore, the final temperature is 77.1 °C

3 0
3 years ago
What is the difference between a single-model production line and a mixed-model production line?
Nat2105 [25]

The unique model production line is responsible for producing identical pieces. For this purpose the balancing of the assembly line is only responsible for assembling a model throughout the line.

This is a considerable difference compared to the mixed model assembly line where many models are assembled during the same production line, that is, it produces parts or products that have slight changes accommodated in them, with slight variations in their model or products of soft variety

The choice of the type of production depends on the type of company and its own demand, always prioritizing the efficiency in the operation. Generally, the mixed model tends to be chosen when demand is very large and customer demand is required to be met. In others it is considered a plant model in which half of the line is mixed and the other one is the only model in order to keep the efficiency balanced.

6 0
3 years ago
A 1 m wide continuous footing is designed to support an axial column load of 250 kN per meter of wall length. The footing is pla
creativ13 [48]

Answer:

correct option is (A) 0.5

Explanation:

given data

axial column load = 250 kN per meter

footing placed =  0.5 m

cohesion = 25 kPa

internal friction angle =  5°

solution

we know angle of internal friction is 5° that is near to 0°

so it means the soil is almost cohesive soil.

and for  a pure cohesive soil

N_{\gamma } = 0

and we know formula for N_{\gamma } is

N_{\gamma } = (Nq - 1 ) × tan(Ф)   ..................1

so here Ф is very less  N_{\gamma } should be nearest to zero

and its value can be 0.5

so correct option is (A) 0.5

7 0
3 years ago
Example – a 100 kW, 60 Hz, 1175 rpm motor is coupled to a flywheel through a gearbox • the kinetic energy of the revolving compo
rjkz [21]

Answer:

1200KJ

Explanation:

The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.

P (rotor-loss) = 3 x K.E

P = 3 x 300 = 900 KJ

After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;

KE = 300 KJ

Since it is in opposite direction, it will also add up to rotor loss

P ( rotor loss ) = 900 + 300 = 1200 KJ

7 0
2 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Other questions:
  • For each section illustrated, find the second moment of area, the location of the neutral axis, and the distances from the neutr
    13·1 answer
  • Estimate the theoretical fracture strength (in MPa) of a brittle material if it is known that fracture occurs by the propagation
    8·1 answer
  • HELLO <br> Can you please Suggest me some FYP ideas <br> #Software_Engineering
    6·1 answer
  • Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subp
    8·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • A steam power plant operating on a simple ideal Rankine cycle maintains the boiler at 6000 kPa, the turbine inlet at 600 °C, and
    11·1 answer
  • A microwave transmitter has an output of 0.1 W at 2 GHz. Assume that this transmitter is used in a microwave communication syste
    8·1 answer
  • Think about the science you have studied in the past or are currently studying. Give an example of something you have learned in
    11·1 answer
  • Which organisms are consumers in this food chain? List all that apply. *
    5·1 answer
  • In the long run, if the firm decides to keep output at its initial level, what will it likely do? Stay on SRATC3 but decrease to
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!