Answer:
A. √25
General Formulas and Concepts:
<u>Math</u>
- Rational Numbers - numbers that can be written as integers, terminating decimals, or fractions
- Irrational Numbers - numbers that have non-terminating decimals i.e infinite decimals and cannot be written into a fraction
Step-by-step explanation:
<u>Step 1: Define</u>
A. √25
B. √123
C. √20
D. π
<u>Step 2: Identify</u>
A. √25 = 5; Rational
B. √123 ≈ 11.0905...; Irrational
C. √20 = 2√5 ≈ 4.47214...; Irrational
D. π ≈ 3.1415926535897932384626433832795...; Irrational
Therefore, our answer choice is A.
11.5 is a rational number
G(p+4)=3(p+4)^2+2(p+4)+27
=3p^2+24p+48+2p+8+27
=3p^2+26p+83
Answer:
∠8 * 4 = ∠7 ----------------(1)
∠8 + ∠7 = 180 ------------(2)
Taking the value of ∠7 from (1) and using it in (2):
<u><em>∠7 = 4 * ∠8</em></u>
<u><em /></u>
∠8 + ∠7 = 180
∠8 + (4 * ∠8) = 180
∠8 + 4∠8 = 180
5∠8 = 180
∠8 = 36° ---------------(3)
Using the value of ∠8 from (3) in (2):
∠8 + ∠7 = 180
36 + ∠7 = 180
∠7 = 144° and ∠8 = 36°
The answer is 4.3 to 1 decimal place