27 ÷ (-2 + (-7))
27 ÷ (-9)
-3
The answer is -3. Hope that helps!
Same here, we do a quick switcharoo on the variables first,
Step-by-step explanation:
<h2>
<em><u>concept :</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2>
<em><u>5y + 4x = 35</u></em></h2><h2 /><h2>
<em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>
Answer:
(A)24 square units
(C)72 square units
(D)96 square units
Step-by-step explanation:
<u>Triangular face</u>
Height of the Triangle=6 Units
Base of the Triangle=8 Units
Area of the Triangular Face

<u>Rectangular Faces</u>
Area of Rectangular face with dimension 12 by 10=12 x 10=120 Square Units
Area of Rectangular face with dimension 12 by 8= 12 X 8=96 Square Units
Area of Rectangular face with dimension 12 X 6=12 x 6=72 Square Units
From the options, the areas are:
- 24 square units
- 72 square units
- 96 square units