Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
True. For example, electron domain geometry and molecular geometry of water and ammonia are different.
Answer:
The answer should be C. Primarily in the liver in response to inflammation :)
Have an amazing day!!
Please rate and mark brainliest!!
Answer:
(a). 4°C, (b). 2.4M, (c). 11.1 g, (d). 89.01 g, (e). 139.2 g and (f). 58 g/mol.
Explanation:
Without mincing words let's dive straight into the solution to the question.
(a). The freezing point depression can be Determine by subtracting the value of the initial temperature from the final temperature. Therefore;
The freezing point depression = [ 1 - (-3)]° C = 4°C.
(b). The molality can be Determine by using the formula below;
Molality = the number of moles found in the solute/ solvent's weight(kg).
Molality = ( 11.1 / 58) × (1000)/ ( 90.4 - 11.1) = 2.4 M.
(c). The mass of acetone that was in the decanted solution = 11.1 g.
(d). The mass of water that was in the decanted solution = 89.01 g.
(e). 2.4 = x/ 58 × (1000/1000).
x = 2.4 × 58 = 139.2 g.
(f). The molar mass of acetone = (12) + (1 × 3) + 12 + 16 + 12 + (1 x 3) = 58 g/mol.