885.39 is the answer you are looking for.
Answer:
18.1 g
Explanation:
You know that the atomic weight of phosphorus is equal to
30.794 u
, where
u
represent the unified atomic mass unit.
The unified atomic mass unit is equivalent to
1 g/mol
, but let's take the long road and prove that identity.
Now, the unified atomic mass unit is defined as
1
12
th
of the mass of a single unbound carbon-12 atom in its ground state and is equivalent to
1 u
=
1.660539
⋅
10
−
24
g
This means that the mass of one phosphorus atom will be
30.974
u
⋅
1.660539
⋅
10
−
24
g
1
u
=
5.14335
⋅
10
−
23
g
You know that one mole of any element contains exactly
6.022
⋅
10
23
atoms of that element - this is known as Avogadro's number.
Well, if you know the mass of one phosphorus atom, you can use Avogadro's nubmer to determine what the mass of one mole of phosphorus atoms
5.14335
⋅
10
−
23
g
atom
⋅
6.022
⋅
10
23
atoms
1 mole
=
30.974 g/mol
Finally, if one mole of phosphorus atoms has a mass of
30.974 g
, then
0.585
moles will have a mass of
0.585
moles
⋅
30.974 g
1
mole
=
18.1 g
From: https://socratic.org/questions/the-atomic-weight-of-phosphorus-is-30-974-u-what-is-the-mass-of-a-phosphorus-sam
Answer:
I believe the answer is B
Explanation:
to be honest i'm not completely sure, sorry
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.