Answer:
You need follower?
See it shows this in Laptop
I can't see who I am following it does itself
mass of PbI₂ = 27.6606 g
<h3>Further explanation</h3>
Given
Pb(NO₃)₂ + NaI → PbI₂ + NaNO₃
28.0 grams of Pb(NO₃)₂ react with 18.0 grams of NaI
Required
mass of PbI₂
Solution
Balanced equation
Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃
The principle of a balanced reaction is the number of atoms in the reactants = the number of atoms in the product
mol Pb(NO₃)₂ :
= 28 : 331,2 g/mol
= 0.0845
mol NaI :
= 18 : 149,89 g/mol
= 0.12
Limiting reactant : mol : coefficient
Pb(NO₃)₂ : 0.0845 : 1 = 0.0845
NaI : 0.12 : 2 = 0.06
NaI limiting reactant (smaller ratio)
mol PbI₂ based on NaI
= 1/2 x 0.12 = 0.06
Mass PbI₂ :
= 0.06 x 461,01 g/mol
= 27.6606 g
The order of increasing C-OC−O bond length is:
a < c < b < e < d
a < c < b < e < d
Therefore, the order of increasing bond strength is:
d < e < b < c < a
d< e < b < c < a
<h3>What is bond length?</h3>
The distance between the centers of two atoms that are covalently connected is known as the bond length. The number of bound electrons determines the bond's length (the bond order). The greater the attraction between the two atoms and the shorter the bond length are, the higher the bond order.
The average distance between the nuclei of two bound atoms in a molecule is referred to as bond length or bond distance in molecular geometry. It is a transferrable characteristic of a bond between atoms of fixed kinds that is comparatively independent from the other components of the molecule.
Bond length and bond order are related; the shorter the bond is when more electrons are involved in its production.
To learn more about bond length from the given link:
brainly.com/question/28225709
#SPJ4
Answer:
you were correct from my point of view but you could add a few zero's
Explanation:
i don't see how the was wrong
33000 Grams/Milliliters (g/mL) = 33,000,000 Milligrams/Milliliter (mg/mL)
1 g/mL = 1,000 mg/mL
1 mg/mL = 0.001000 g/mL
Answer:
-) Acid-base reaction
-) Carboxylic acid, alcohol, alkene and ketone
Explanation:
For the reaction between acetic acid and triethylamine, we will have an <u>acid-base reaction</u>. Therefore a s<u>alt would be produced</u> in this case an <u>"ammonium quaternary salt"</u>. Also, we have to remember that on this reaction the acid is the acetic acid and the base is the triethylamine. See figure 1
For the second question, we have to check the <u>structure of Prostaglandin</u> E1 in which we have the functional groups:
<u>1) Carboxylic acid</u>
<u>2) Alcohol</u>
<u>3) Alkene</u>
<u>4) Ketone</u>
See figure 2.
I hope it helps!