1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
2 years ago
11

What can be used to explain a statement in a geometric proof

Mathematics
1 answer:
Lady bird [3.3K]2 years ago
7 0

Answer:

corollary,postulate,theorem,definition

You might be interested in
Encuentre el radio y el área de círculos cuya circunferencias tienen las siguientes medidas
Vadim26 [7]

Answer:

Los radios de los círculos son r_{1} \approx 9.995, r_{2} \approx 2.013, r_{3} \approx 7.592, respectivamente.

Las áreas de los círculos son A_{1} \approx 313.845, A_{2} \approx 12.730, A_{3} \approx 181.077, respectivamente.

Step-by-step explanation:

La circunferencia (s) se calcula mediante la siguiente fórmula:

s = 2\pi\cdot r (1)

Donde r es el radio del círculo.

Una vez hallado el radio, se determina el área de la figura geométrica (A) mediante la siguiente fórmula:

A = \pi\cdot r^{2} (2)

Si conocemos que las circunferencias son s_{1} = 62.8, s_{2} = 12.65 y s_{3} = 47.7, respectivamente:

1) Radios de los círculos

r_{1} = \frac{s_{1}}{2\pi}, r_{2} = \frac{s_{2}}{2\pi}, r_{3} = \frac{s_{3}}{2\pi}

r_{1} \approx 9.995, r_{2} \approx 2.013, r_{3} \approx 7.592

2) Áreas de los círculos

A_{1} = \pi\cdot r_{1}^{2}, A_{2} = \pi\cdot r_{2}^{2}, A_{3} = \pi\cdot r_{3}^{2}

A_{1} \approx 313.845, A_{2} \approx 12.730, A_{3} \approx 181.077

6 0
3 years ago
Lydia drove 216 miles and used 6 gallons of gasoline on a recent trip. Which of the following represents the unit rate of gasoli
yulyashka [42]

Step-by-step explanation:

is their an attachment for the problem?

7 0
3 years ago
Read 2 more answers
Simplify the problem.
lesya [120]

Answer:

Option 4: 4¹¹

Step-by-step explanation:

Looking at the problem, I need to work out 4⁴ squared first, which is the same as 4⁸. Then multiply that by 4³ to get 4¹¹. What I did was simply add 3 + (4 * 2), which is 11.

7 0
2 years ago
A 20 ft. ladder is used against a 15 ft. wall. What is the measure of the angle made by the ladder and the ground (nearest whole
Brrunno [24]

Step-by-step explanation:

Given that,

The length of a ladder, H = 20 feet

The height of the wall, h = 15 ft

We know that,

\sin\theta=\dfrac{h}{H}

h is perpendicular and H is hypotenuse

So,

\sin\theta=\dfrac{15}{20}\\\\\theta=\sin^{-1}(\dfrac{15}{20})\\\\\theta=48.59^{\circ}

Now using Pythagoras theoerm,

b=\sqrt{H^2-h^2}\\\\b=\sqrt{20^2-15^2}\\\\b=13.2\ ft

Hence, the angle made by the ladder and the ground is 48.59° and the ladder is 13.2 feet from the wall on the ground.

6 0
3 years ago
What is the solution for the equation? 14.8 = n minus 0.3
Ymorist [56]

Answer:

15.1

Step-by-step explanation:

14.8=n-.3

you'd add .3 to other side so it'd be 15.1

5 0
3 years ago
Other questions:
  • I'm Stuck on this problem
    6·1 answer
  • If four desk lamps cost a $120 what is the average cost per lamp
    8·2 answers
  • Three less than x is equal to 13
    9·2 answers
  • Can someone help me with my math I don't understand it
    9·1 answer
  • PLEASE HELP!!
    15·1 answer
  • Please help I have no idea how to do this!!!
    7·1 answer
  • I really need help with this question
    5·1 answer
  • List the integer solutions of: -3 < 2e ≤ 8.
    6·2 answers
  • I need help pwease? Btw, I’m in 6th grade
    10·1 answer
  • The graph of a function is shown:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!