Answer:
C
Step-by-step explanation:
okay, this is actually pretty easy because it just works with simple translations.
(x+a)^2 + b
if a is positive, the graph shifts left
if a is negative, the graph shifts right
if b is positive, the graph shifts up
if b is negative, the graph shifts down
so since the quadratic, is starts at the origin and is shift 3 to the left, and 2 up:
the equation is
(x+3)^2 + 2
The Laplace transform of the given initial-value problem
is mathematically given as

<h3>What is the Laplace transform of the given initial-value problem? y' 5y = e4t, y(0) = 2?</h3>
Generally, the equation for the problem is mathematically given as
![&\text { Sol:- } \quad y^{\prime}+s y=e^{4 t}, y(0)=2 \\\\&\text { Taking Laplace transform of (1) } \\\\&\quad L\left[y^{\prime}+5 y\right]=\left[\left[e^{4 t}\right]\right. \\\\&\Rightarrow \quad L\left[y^{\prime}\right]+5 L[y]=\frac{1}{s-4} \\\\&\Rightarrow \quad s y(s)-y(0)+5 y(s)=\frac{1}{s-4} \\\\&\Rightarrow \quad(s+5) y(s)=\frac{1}{s-4}+2 \\\\&\Rightarrow \quad y(s)=\frac{1}{s+5}\left[\frac{1}{s-4}+2\right]=\frac{2 s-7}{(s+5)(s-4)}\end{aligned}](https://tex.z-dn.net/?f=%26%5Ctext%20%7B%20Sol%3A-%20%7D%20%5Cquad%20y%5E%7B%5Cprime%7D%2Bs%20y%3De%5E%7B4%20t%7D%2C%20y%280%29%3D2%20%5C%5C%5C%5C%26%5Ctext%20%7B%20Taking%20Laplace%20transform%20of%20%281%29%20%7D%20%5C%5C%5C%5C%26%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%2B5%20y%5Cright%5D%3D%5Cleft%5B%5Cleft%5Be%5E%7B4%20t%7D%5Cright%5D%5Cright.%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%5Cright%5D%2B5%20L%5By%5D%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20s%20y%28s%29-y%280%29%2B5%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%28s%2B5%29%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%2B2%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%2B2%5Cright%5D%3D%5Cfrac%7B2%20s-7%7D%7B%28s%2B5%29%28s-4%29%7D%5Cend%7Baligned%7D)



In conclusion, Taking inverse Laplace tranoform
![L^{-1}[y(s)]=\frac{1}{9} L^{-1}\left[\frac{1}{s-4}\right]+\frac{17}{9} L^{-1}\left[\frac{1}{s+5}\right]$ \\\\](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5By%28s%29%5D%3D%5Cfrac%7B1%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%5Cright%5D%2B%5Cfrac%7B17%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cright%5D%24%20%5C%5C%5C%5C)

Read more about Laplace tranoform
brainly.com/question/14487937
#SPJ4
1. Find the cost of levelling the ground in the form of a triangle having the sides 51 m, 37 m and 20 m at the rate of ₹ 3 per m².
a = 51 m, b = 37 m, c = 20 m
semiperimeter: p = (51+37+20):2 = 54 m
Area of triangle:

Rate: ₹ 3 per m².
Cost: ₹ 3•306 = ₹ 918
2. Find the area of the isosceles triangle whose perimeter is 11 cm and the base is 5 cm.
a = 5 cm
a+2b = 11 cm ⇒ 2b = 6 cm ⇒ b = 3 cm
p = 11:2 = 5.5

3. Find the area of the equilateral triangle whose each side is 8 cm.
a = b = c = 8 cm
p = (8•3):2 = 12 cm

4. The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.
a = 2x
b = 3x
2x + 2•3x = 32 cm ⇒ 8x = 32 cm ⇒ x = 4 cm ⇒ a = 8 cm, b = 12 cm
p = 32:2 = 16 cm

It is (1,15). I recommend using a website called desmos because it helps with graphing.