The the exact mass is 24.740% (according to the internet) but I’d say that it’s 25
Answer:
3
Explanation:
metallic oxides are basic in nature.
<span>You have to use a Newman projection to make sure that the H on C#2 is anti-coplanar with the Br on C#1. (Those are the two things that are going to be eliminated to make the alkene.)
My Newman projection looks like this when it's in the right configuration:
Front carbon (C#2) has ethyl group straight up, H down/left, and CH3 down/right
Back carbon (C#1) has H straight down, Ph up/left, and Br up/right.
Then when you eliminate the H from C#2 and the Br from C#1, you will have Ph and the ethyl group on the same side of the molecule, and you'll have the remaining H and CH3 on the same side of the molecule.
This is going to give you (Z)-2-methyl-1-phenyl-1-butene.</span>
Answer:
PNO₂ = 0.49 atm
PN₂O₄ = 0.45 atm
Explanation:
Let's begin with the equation of ideal gas, and derivate from it an equation that involves the density (ρ = m/V).
PV = nRT
n = m/M (m is the mass, and M the molar mass)


PxM = ρRT
ρ = PxM/RT
With the density of the gas mixture, we can calculate the average of molar mass (Mavg), with the constant of the gases R = 0.082 atm.L/mol.K, and T = 16 + 273 = 289 K

0.94Mavg = 63.9846
Mavg = 68.0687 g/mol
The molar mass of N is 14 g/mol and of O is 16 g/mol, than
g/mol and
g/mol. Calling y the molar fraction:

And,


So,





The partial pressure is the molar fraction multiplied by the total pressure so:
PNO₂ = 0.52x0.94 = 0.49 atm
PN₂O₄ = 0.48x0.94 = 0.45 atm
Answer: 
Explanation:
Lattice energy : It is defined energy released when ions combine together in a gaseous phase to form a compound. it is energy possessed by the crystal lattice of a compound. Denoted by symbol
.
, energy is absorbed while forming of the lattice
, energy is release while forming of the lattice

One mole of sodium ion when combines with one mole chloride ion release 786 kJ of energy.