Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.
Answer:
3/2
Step-by-step explanation:
It is proportional because it is 6/4 simplified.
Answer:
0.7361
Step-by-step explanation:
In this question we have
number to be 10
Then we have a probability of 10% = 0.10
We have q = 1-p
= 1-0.10 = 0.90
Then the probability of not more than 1 being defective:
P(x=0) + p(x= 1)
(10C0 x 0.1⁰ x 0.9^10-0)+(10C1 x 0.1¹ x 0.9^10-1)
= 1 x1 x0.3487 + 10 x 0.1 x 0.3874
= 0.3487 + 0.3874
= 0.7361
This is the the required probability and this answers the question.
probability = 10 percent = 0.1
q= 1- 10percent = 90% = 0.9
n = 4
To get the required probabiltiy for this question is
P(not greater than one is defective )=P(x=0)+P(x=1)
= 4C0x(0.1)⁰x(0.9)⁴+4C1x(0.1)¹x(0.9)³
= 0.9477
The required probability is 0.9477
The line is horizontal, therefore the slope is 0.
Answer=0