1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
3 years ago
6

6 is 15% of what number

Mathematics
1 answer:
larisa [96]3 years ago
4 0
40 is the answer 15% of 40=6
You might be interested in
I have 30 ones, 82 thousand, 60tens and 100 hundreds
Neporo4naja [7]
That creates the number 82,190
6 0
3 years ago
Please help. will give points
Snezhnost [94]
(x² + 10)(6x - 5)
6x³ - 5x² + 60x - 50 or the second option
6 0
3 years ago
Problem 4: Solve the initial value problem
pishuonlain [190]

Separate the variables:

y' = \dfrac{dy}{dx} = (y+1)(y-2) \implies \dfrac1{(y+1)(y-2)} \, dy = dx

Separate the left side into partial fractions. We want coefficients a and b such that

\dfrac1{(y+1)(y-2)} = \dfrac a{y+1} + \dfrac b{y-2}

\implies \dfrac1{(y+1)(y-2)} = \dfrac{a(y-2)+b(y+1)}{(y+1)(y-2)}

\implies 1 = a(y-2)+b(y+1)

\implies 1 = (a+b)y - 2a+b

\implies \begin{cases}a+b=0\\-2a+b=1\end{cases} \implies a = -\dfrac13 \text{ and } b = \dfrac13

So we have

\dfrac13 \left(\dfrac1{y-2} - \dfrac1{y+1}\right) \, dy = dx

Integrating both sides yields

\displaystyle \int \dfrac13 \left(\dfrac1{y-2} - \dfrac1{y+1}\right) \, dy = \int dx

\dfrac13 \left(\ln|y-2| - \ln|y+1|\right) = x + C

\dfrac13 \ln\left|\dfrac{y-2}{y+1}\right| = x + C

\ln\left|\dfrac{y-2}{y+1}\right| = 3x + C

\dfrac{y-2}{y+1} = e^{3x + C}

\dfrac{y-2}{y+1} = Ce^{3x}

With the initial condition y(0) = 1, we find

\dfrac{1-2}{1+1} = Ce^{0} \implies C = -\dfrac12

so that the particular solution is

\boxed{\dfrac{y-2}{y+1} = -\dfrac12 e^{3x}}

It's not too hard to solve explicitly for y; notice that

\dfrac{y-2}{y+1} = \dfrac{(y+1)-3}{y+1} = 1-\dfrac3{y+1}

Then

1 - \dfrac3{y+1} = -\dfrac12 e^{3x}

\dfrac3{y+1} = 1 + \dfrac12 e^{3x}

\dfrac{y+1}3 = \dfrac1{1+\frac12 e^{3x}} = \dfrac2{2+e^{3x}}

y+1 = \dfrac6{2+e^{3x}}

y = \dfrac6{2+e^{3x}} - 1

\boxed{y = \dfrac{4-e^{3x}}{2+e^{3x}}}

7 0
2 years ago
HELP PLEASE
Elis [28]

Answer:

  • 2 ≤ x < 9 or x = [2, 9)

Step-by-step explanation:

<u>Negative four is at least six less than a number</u>

  • -4 ≤ x - 6 ⇒ x ≥ 2

<u>Sum of a negative two & nine times a number is less than seventy nine</u>

  • -2 + 9x < 79  ⇒ 9x < 81 ⇒ x < 9

<u>Combined inequality:</u>

  • 2 ≤ x < 9 or x = [2, 9)
3 0
3 years ago
Which equation can be used to find the unknown length, b, in this triangle?
Romashka-Z-Leto [24]

The equation for finding the hypotneus of a right triangle is
{a }^{2}  +  {b}^{2}  = c {}^{2}
so we know that 4²+b²=5²
so that would simplify as 16+b=25
so x=25-16
which is 9
so therefore we can conclude that
b = 9inches
3 0
3 years ago
Read 2 more answers
Other questions:
  • Compounds A and B are used in an experiment.
    5·2 answers
  • Why is rates, ratios ,and proportions important when working in the healthcare industry?
    13·1 answer
  • Simplify: 4^ sqrt 400/ 4^ sqrt 5 <br> SHOW WORK
    14·1 answer
  • 2. Find the midpoint of the segment with endpoints (1,4), (3,6)
    15·1 answer
  • Min-Jun and Felicia are scuba diving.Min-Jun is 10.34 meters below the surface of the ocean, and Felicia is 1.69 meters deeper t
    10·1 answer
  • Find the length of side x in simplest radical form with a rational denominator
    9·1 answer
  • I need help to find the value please
    7·2 answers
  • Please help me!<br> [One Step Inequalities]
    11·1 answer
  • What is the value of n?
    11·1 answer
  • Round answer to the nearest whole number!!
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!