1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
4 years ago
7

Simplify the expression. Show your work. 22 + (3^2 – 4^2)

Mathematics
1 answer:
irga5000 [103]4 years ago
6 0
<span>22 + (3^2 – 4^2)
= </span><span>22 + (9 – 16)
</span><span>= 22 -7
= 15</span>
You might be interested in
Cos xcos y=1/2(sin(x+y)+ sin(x-y))
garri49 [273]

Taking Rhs

1/2 [sin(x+y)+ sin (x-y)]

using sinA + sin B = 2 cos (A+B)/2 cos( A - B)/2

1/2 [ 2 Cos ( x+y+x-y)/2 . Cos (x+y-x+y)/2]

=Cos 2x/2. Cos 2y/2 = Cos x . Cos y

Hence true

7 0
4 years ago
Please Answer ASAP<br> TIMED
otez555 [7]

Answer:

It should be D, friend.

8 0
4 years ago
Read 2 more answers
Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + sin z j + (x2z + y2)k and S is the top half of
kifflom [539]

Looks like we have

\vec F(x,y,z)=z^2x\,\vec\imath+\left(\dfrac{y^3}3+\sin z\right)\,\vec\jmath+(x^2z+y^2)\,\vec k

which has divergence

\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(z^2x)}{\partial x}+\dfrac{\partial\left(\frac{y^3}3+\sin z\right)}{\partial y}+\dfrac{\partial(x^2z+y^2)}{\partial z}=z^2+y^2+x^2

By the divergence theorem, the integral of \vec F across S is equal to the integral of \nabla\cdot\vec F over R, where R is the region enclosed by S. Of course, S is not a closed surface, but we can make it so by closing off the hemisphere S by attaching it to the disk x^2+y^2\le1 (call it D) so that R has boundary S\cup D.

Then by the divergence theorem,

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iiint_R(x^2+y^2+z^2)\,\mathrm dV

Compute the integral in spherical coordinates, setting

\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}\implies\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi

so that the integral is

\displaystyle\iiint_R(x^2+y^2+z^2)\,\mathrm dV=\int_0^{\pi/2}\int_0^{2\pi}\int_0^1\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{2\pi}5

The integral of \vec F across S\cup D is equal to the integral of \vec F across S plus the integral across D (without outward orientation, so that

\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\frac{2\pi}5-\iint_D\vec F\cdot\mathrm d\vec S

Parameterize D by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

with 0\le u\le1 and 0\le v\le2\pi. Take the normal vector to D to be

\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=-u\,\vec k

Then we have

\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^1\left(\frac{u^3}3\sin^3v\,\vec\jmath+u^2\sin^2v\,\vec k\right)\times(-u\,\vec k)\,\mathrm du\,\mathrm dv

=\displaystyle-\int_0^{2\pi}\int_0^1u^3\sin^2v\,\mathrm du\,\mathrm dv=-\frac\pi4

Finally,

\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\frac{2\pi}5-\left(-\frac\pi4\right)=\boxed{\frac{13\pi}{20}}

6 0
4 years ago
. Evaluate each expression given that X = -2, Y = 8 and Z = 4
Liula [17]
Hello:-
this(*)is counted as multiplication
1. 4*2 + (-2+8)
=8+(6)
=14
2. (-2)*2 + 4
= -4+4
=0
3. 8*4/-2
= -32/2 (as -ve sign cannot be in denominator)
= -16
4. -2*4/8
= -8/8
= -1
5. -2*8/4
= -16/4
= -4
therefore it is a. -4
I hope it will help u !!!!!!!!!
8 0
3 years ago
Abcd is a square. find bc
chubhunter [2.5K]
Slope is equal to 20 2,0
3 0
3 years ago
Other questions:
  • How do you write 3.806 million in standard form ?
    12·1 answer
  • Write and solve the equation and then check your answer. Which statements are true about the equation and its solution? Check
    6·3 answers
  • How do you put this question into an equation. *PLEASE ANSWER ASAP*
    7·2 answers
  • What is the slope of the line passing through the points (0, 4) and (−8, −1) ?
    5·1 answer
  • Hello please help i’ll give brainliest
    8·1 answer
  • Find the area of the shape using Pythagoras Theorem please​
    13·1 answer
  • Solve for x: 3(x−4)=12x
    12·1 answer
  • Find the distance between (3,5) and (6, 7)<br><br> A. 10.7<br> B. 3.6<br> C. 9.2<br> D. 12.4
    12·1 answer
  • PLEASE PLEASE PLEASE HELP <br>20<br>HELPPPPPPPPP<br>​
    10·1 answer
  • Tell whether the triangle with the given side lengths is a right triangle.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!