The angles of the triangle are 39°, 51°, and 90°.
Step-by-step explanation:
Step 1:
The sum of all the angles in any triangle is equal to 180°.
We have two of the three angles in terms of x while the third angle is not given directly. Since it is a right-angled triangle, one of the angles equals 90°.
So the angles of the triangle are
and ![90.](https://tex.z-dn.net/?f=90.)
Step 2:
Now, we substitute all the angles to a sum of 180 to determine the value of x.
![3x + 4x - 1 + 90 = 180.](https://tex.z-dn.net/?f=3x%20%2B%204x%20-%201%20%2B%2090%20%3D%20180.)
![7x = 91, x = \frac{91}{7} = 13.](https://tex.z-dn.net/?f=7x%20%3D%2091%2C%20x%20%3D%20%5Cfrac%7B91%7D%7B7%7D%20%3D%2013.)
So x = 13°. The angles are
![3x = 3 (13) = 39, 4x-1 = 4(13) - 1 = 51.](https://tex.z-dn.net/?f=3x%20%3D%203%20%2813%29%20%3D%2039%2C%204x-1%20%3D%204%2813%29%20-%201%20%3D%2051.)
The angles of the triangle are 39°, 51°, and 90°.