Answer:
They use the process of photosynthesis to transform water, sunlight, and carbon dioxide into oxygen, and simple sugars
Explanation:
Heat will flow from the copper coin to the brass coin.<span>
</span>
cleaning oil spills, cleaning pollution and generating electricity, metabolising methane into methanol, converting newspaper to biofuel and treating depression to anciety.
hope some of my information helped
Answer:
1/8 (12.5%)
Explanation:
An autosomal recessive disease is an inherited disease in which an individual need to receive both defective alleles at the same gene <em>locus</em> to be expressed in the phenotype. In this case, both parents are carriers of the recessive mutant allele associated with the sickle cell anaemia trait, thereby both parents are heterozygous, ie., each parent has one copy of the normal allele 'H' and one copy of the defective mutant allele 'h' associated with this condition. In consequence, their first child has a 1/4 (25%) chance of having sickle-cell anaemia. Moreover, the chance of having a girl is 1/2 and the chance of having a boy is 1/2, thereby the final chance of having a girl sickle cell anaemia individual is 1/4 x 1/2 = 1/8 (12.5%).
- Parental cross for sickle cell anaemia trait = Hh x Hh >>
- F1 = 1/4 HH (normal); 1/2 Hh (normal); 1/4 hh (sickle cell anaemia) >>
- Sex proportion of sickle cell anaemia individuals = 1/8 female sickle cell anaemia individuals + 1/8 male sickle cell anaemia individuals (1/8 + 1/8 = 1/4)
Answer:
25%
Explanation:
<u>Genotypes and phenotypes:</u>
- SS = straight hair
- CC= curly hair
- SC = wavy hair
- AA or A0= type A blood
- BB or B0= type B blood
- AB = type AB blood
- 00 = type 0 blood
A man with straight hair and A blood has the genotype SS AA or SS A0.
A woman with wavy hair and B blood has the genotype SC BB or SC B0.
Their first child has straight hair and O blood: SS 00
Because the child has type 0 blood, both parents must have a 0 allele, so their genotypes are SS A0 and SC B0.
<u>If their second child is a boy with straight hair, what is the probability that he has A blood?</u>
The hair and blood type genes are independent, so the hair phenotype of the child is irrelevant to determine the probability of him having A blood.
The parental cross for blood type is A0 x B0.
If you do a Punnett Square, you'll get the following offspring:
25% AB, 25% B0, 25% A0 and 25% 00.
The answer is the child has a probability of 25% of having A blood.