Considering the angle a by cosine rule
11^2 =7 ^2 +15^2 - 2(7)(15)cos(a)
When you do the maths,
Cos(a) =153/210 =0.729
a= cos inverse of 0.729
a=43 degrees
Considering angle b
7^2=15^2 +11^2 -2(11)(15) cos(b)
This will result in cos(b) =297/330=0.9
b= cos inverse of 0.9 = 25.8 degrees
Considering angle c
15^2=7^2 +11^2 - 2(11)(7) cos(c)
Cos(c) will be = -55/154 = -0.357
c= cos inverse of -0.357=110.9
Comparing the angles a,b and c,
C is the largest size in the triangle with an angle of 110.9 degrees
Am I right please ??
Answer:
SA ≈ 1134 cm²
General Formulas and Concepts:
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
- Radius: r = d/2
- Surface Area of a Sphere: SA = 4πr²
Step-by-step explanation:
<u>Step 1: Define</u>
d = 19 cm
<u>Step 2: Find </u><em><u>SA</u></em>
- Substitute [R]: r = 19 cm/2
- Divide: r = 9.5 cm
- Substitute [SAS]: SA = 4π(9.5 cm)²
- Exponents: SA = 4π(90.25 cm²)
- Multiply: SA = 361π cm²
- Multiply: SA = 1134.11 cm²
- Round: SA ≈ 1134 cm²
Answer:
A. (125.6 in)
Step-by-step explanation:
R = d / 2 = 40 / 2 = 20 in
Circumference is:
S = 2*π*R=2*3.14*20=125.6 in
Answer:
x = 10
Step-by-step explanation:
x = 4 + (4x-4) ^ (1/2)
First, we rewrite the expression:
x = 4 + (4x-4) ^ (1/2)
x = 2 (2+ (x-1) ^ (1/2))
x = 4 + 2 (x-1) ^ (1/2)
From here we get a solution for x = 10
To check it we substitute x = 10 in the expression:
10 = 4 + 2 (10-1) ^ (1/2)
10 = 4 + 2 (9) ^ (1/2)
10 = 4 + 2 (3)
10 = 4 + 6
10 = 10
Answer:
The solution is:
x = 10