Answer:
3:2
Step-by-step explanation:
I am assuming this means convert to whole numbers
3/5:2/5 is 6/10:4/10
6/10:4/10 is 0.6:0.4
0.6:0.4 is 6:4
6:4 is 3:2
The number in the parentheses is the rate of change. Because this number is less than 1 it is a decrease, so it is a decay.
The percent decrease is 1 - 0.63 = 0.37 = 37% decrease
Answer:
-12x + 4
Step-by-step explanation:
(6x - 8 - 2x) - (12x - 7) - (4x - 5)
The subtraction sign before the parenthesis is basically multiplying by -1, so the subtraction signs in the parenthesis have to change to addition. After that, you can remove the parenthesis.
6x - 8 - 2x - 12x + 7 - 4x + 5
Simplified = -12x + 4
Answer:
d
Step-by-step explanation:
an equation always shows that sum is equal
in this case 1825026 will subtract 17 and the remainder will be used to find A
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is

a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,

For this particular integral, first integrate by parts, taking


![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking


![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is

which can be handled with the same substitution used in part (a). We get

c. Same procedure as in (b). We have

and

Then
