1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
2 years ago
9

If five apples are $4 what will one apple cost??

Mathematics
1 answer:
ale4655 [162]2 years ago
6 0

Answer:

One apple will cost $1.25

Step-by-step explanation:

5 ÷ 4 = 1.25

Hope this helps!

<em>Please consider marking as brainliest!</em>

You might be interested in
What are the answers?
Bond [772]

Answer:c

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Sam and Bobby want to know who cycled faster. The table shows the total miles Sam traveled over time. The graph shows the same r
tigry1 [53]

Answer:

<h2>Sam cycled fast, at a rate of 10 miles per hour.</h2>

Step-by-step explanation:

To solve this problem we have to find the slope of each case. The definition of a slope is:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\

Where (x_{1};y_{1}) is the first point, and (x_{2};y_{2}) is the second point.

Let's find each slope.

<h3>Sam.</h3>

Let's use the points (2;20) and (5;50)

Applying the definition of the slope, we have:

m_{sam} =\frac{50-20}{5-2}=\frac{30 \ miles}{3 \ hour}=10 \ miles/hour

This relation means that Sam cycled 10 miles per hour.

<h3>Bobby.</h3>

Let's use the points (2;18) and (6;54)

m=\frac{54-18}{6-2}=\frac{36 \ miles}{4 \ hour}=9 \ miles/hour

Bobby cycled 9 miles per hour.

Therefore, according to these ratios, Sam cycled fast, at a rate of 10 miles per hour.

7 0
3 years ago
What is the sum of 50.249 + 21.3
Lisa [10]

Answer:

71.549

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
 find all possible value of the given variable 
mamaluj [8]
1.\\ \\ h^2+5h=0 \\ \\h(x+5)=0\\ \\x=0 \ \ \ or \ \ \ x+5 =0\ \ |-5\\ \\x+5-5=0-5\\ \\x=0 \ \ \ or \ \ \ x=-5


2.\\ \\ z^2-z=0\\ \\z(x-1)=0\\ \\z=0 \ \ \ or \ \ \ z-1 =0 \ \ | +1\\ \\z-1+1 =0 +1 \\ \\x=0 \ \ \ or \ \ \ z=1


3.\\ \\m^2+13m+40=0 \\ \\a=1 ,\ b=13, \ c=40 \\ \\\Delta =b^2-4ac =13^2-4\cdot 1\cdot 40=169 - 1600=-1431 \\ \\and \ we \ know \ when \ \Delta \ is \ negative, \ theres \ no \solution


4.\\ \\z^2-3z=0 \\ \\ (z-3)=0\\ \\z=0 \ \ \ or \ \ \ z-3 =0\ \ |+3\\ \\ z-3+3=0+3\\ \\z=0 \ \ \ or \ \ \ z=3


5.\\ \\q^2+7q=0 \\ \\q(q+7)=0\\ \\q=0 \ \ \ or \ \ \ q+7 =0\ \ |-7\\ \\q+7-7=0-7\\ \\q=0 \ \ \ or \ \ \ q=-7


6.\\ \\k^2+2k=0\\ \\k(k+2)=0\\ \\k=0 \ \ \ or \ \ \ k+2 =0\ \ |-2\\ \\k+2-2=0-2\\ \\k=0 \ \ \ or \ \ \ k=-2


7. \\ \\ x^2-3x-70=0 \\ \\a=1,\ b=-3, \ c=-70 \\ \\\Delta =b^2-4ac = (-3)^2-4\cdot 1\cdot (-70)= 9+280=289\\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{3-\sqrt{289}}{2 }=\frac{ 3-17}{2}=\frac{-14}{2}=-7

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{3+\sqrt{289}}{2 }=\frac{ 3+17}{2}=\frac{20}{2}=10\\ \\(x+7)(x-10)=0


8.\\ \\q^2+7q-60=0 \\ \\a=1,\ b=7, \ q=-60 \\ \\\Delta =b^2-4ac = 7^2-4\cdot 1\cdot (-60)=49+240=289 \\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-7-\sqrt{289}}{2 }=\frac{ -7-17}{2}=\frac{-24}{2}=-12

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-7+\sqrt{289}}{2 }=\frac{ -7+17}{2}=\frac{ 10}{2}= 5\\ \\(x+12)(x-5)=0


9.\\ \\z^2+9z-36=0 \\ \\a=1,\ b=9, \ q=-36 \\ \\\Delta =b^2-4ac = 9^2-4\cdot 1\cdot (-36)= 81+144=225\\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-9-\sqrt{225}}{2 }=\frac{ -9-15}{2}=\frac{-24}{2}=-12

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-9+\sqrt{225}}{2 }=\frac{ -9+15}{2}=\frac{6}{2}=3\\ \\(x+11)(x-3)=0


10.\\ \\d^2-13d+22=0 \\ \\a=1,\ b=-13, \ q=22 \\ \\\Delta =b^2-4ac = (-13)^2-4\cdot 1\cdot 22= 169-88=81\\ \\ d_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{13-\sqrt{81}}{2 }=\frac{ 13-9}{2}=\frac{4}{2}=2

d_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{13+\sqrt{81}}{2 }=\frac{ 13+9}{2}=\frac{22}{2}=11\\ \\(d-2)(d-11)=0


7 0
3 years ago
I need help with this question please and thank you
Nadusha1986 [10]

we have the number

6-\sqrt[]{-40}

Remember that

i^2=-1

so

substitute

6-\sqrt[]{(i^2)40}6-2i\sqrt[]{10}

therefore

the real part is 6

the imaginary part is -2√10

8 0
1 year ago
Other questions:
  • Write the equation of the line in point-slope form that passes through the given point with the given slope (1,5); m = -3
    9·1 answer
  • An office table consists of a rectangle 2 meters long by 1.5 meters wide and a semicircle 2 meters in diameter. What is the peri
    13·1 answer
  • Solve for g. g + 7 - 4 = 15 show your work
    14·2 answers
  • Over what interval is the function in this graph decreasing? ANYONE HELP ME PLEASE !!!)';
    6·1 answer
  • What is the answer??
    7·2 answers
  • Can someone help with this?​
    10·2 answers
  • Cho A là ma trận vuông cấp 2 và detA=11, Khi đó det(3A)=
    15·1 answer
  • Can someone please tell me what the range is?
    13·1 answer
  • Find the 10th term of the geometric sequence 8,-16,32
    9·1 answer
  • HELPPPPPPP MEEEEE<br> BUT PUT THE CORRECT ANSWER
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!