NASA launches a rocket at t = 0 seconds. Its height, in meters above sea-level, as a function of time is given by

The sea level is represented by h = 0, therefore, to find the corresponding time when h splashes into the ocean we have to solve for t the following equation:

Using the quadratic formula, the solution for our problem is

The rocket splashes after 26.845 seconds.
The maximum of this function happens at the root of the derivative. Differentiating our function, we have

The root is

Then, the maximum height is

1029.99 meters above sea level.
Answer:

Step-by-step explanation:
A complex number is defined as z = a + bi. Since the complex number also represents right triangle whenever forms a vector at (a,b). Hence, a = rcosθ and b = rsinθ where r is radius (sometimes is written as <em>|z|).</em>
Substitute a = rcosθ and b = rsinθ in which the equation be z = rcosθ + irsinθ.
Factor r-term and we finally have z = r(cosθ + isinθ). How fortunately, the polar coordinate is defined as (r, θ) coordinate and therefore we can say that r = 4 and θ = -π/4. Substitute the values in the equation.
![\displaystyle \large{z=4[\cos (-\frac{\pi}{4}) + i\sin (-\frac{\pi}{4})]}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7Bz%3D4%5B%5Ccos%20%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%2B%20i%5Csin%20%28-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5D%7D)
Evaluate the values. Keep in mind that both cos(-π/4) is cos(-45°) which is √2/2 and sin(-π/4) is sin(-45°) which is -√2/2 as accorded to unit circle.

Hence, the complex number that has polar coordinate of (4,-45°) is 
The answer should be A
please let me know if this is wrong
Y = a x² + b x + c
y = 0.0473809524 · 20² + 2.221428571 · 20 - 0.005952381 =
= 18.95236 + 44.42875 - 0.05952381 = 63.374978 ≈ 63.4
Answer: C ) 63.4 ft.
(10 1/2)/(3/8)
= (21/2)/(3/8) Convert to improper
= (21/2)*(8/3) Multiply by reciprocal of second
=(7/1)*(4/1) Cross reduce
=28 Multiply