1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lostsunrise [7]
3 years ago
10

Compact discs are on sale for $13.00 including tax. How many can you buy with $84.00?

Mathematics
1 answer:
marishachu [46]3 years ago
5 0

Answer:

You can buy 6

Step-by-step explanation:

You divide 84 by 13 and it will give u a decimal

You might be interested in
(1/4)x+1=32 <br><br> -A: -7/2<br> -B: 2<br> -C: -2<br> -D: 3/2
777dan777 [17]
The answer is b due to pemdas
4 0
2 years ago
SHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Stella [2.4K]

Answer:

Shesh

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
-4x4+1.5-2.5-2x4-6.5
nekit [7.7K]

Answer:

0.5

please mark me as Branliest

4 0
2 years ago
Read 2 more answers
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
A tablecoth is 82 inches long. What is the length in feet and inches
Maksim231197 [3]
You will do 82 ÷ 12 and u will get 6.8
8 0
2 years ago
Other questions:
  • Is 2/3 bigger than 1/6
    15·2 answers
  • Ratios with the same denominator of 2:3 and 3:4
    12·1 answer
  • The sum of exterior angles of a regular polygon are equal TRUE\FALSE<br>​
    6·2 answers
  • GEOMETRY. PLEASE INCLUDE CLEAR ANSWER AND EXPLANATION
    11·1 answer
  • What is the t intercept of the line given by the equation below y= -10x + 14
    6·1 answer
  • What is the median of 137 115 104 to 63 and 98
    12·1 answer
  • The admission fee at a small rodeo is $8.50 for children and $15.00 for adults. On a certain day, 400 people enter the rodeo and
    11·1 answer
  • 1/2q+2(q+5)=-4(q+1)+1
    8·2 answers
  • I need help pls someone
    12·1 answer
  • NEED HELP ASAP! WILLING TO GIVE BRAINLIEST and 100 POINTS!!!!!!!Lisa has to cut her grandma's grass this weekend and wants to kn
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!