Answer:
La velocidad de la luz en el vacío es una constante universal con el valor de 299 792 458 m/s (186 282,397 mi/s),aunque suele aproximarse a 3·108 m/s. Se simboliza con la letra c, proveniente del latín celéritās (en español, celeridad o rapidez).
¿Cuál es la consecuencia que a velocidad de la luz sea constante?
Respuesta. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.
Answer:
D
Explanation:
D) The overall work done by gravity is zero
This statement is correct .
If m be the mass of each of the children and h be the height of tower
work done by gravity on the boys in going up = - mgh
it is so because force applied by gravity = mg downwards and displacement
is upwards
work done will be negative = - mgh
Work done by gravity on boys when they come down = + mgh because both force and displacement are downwards .
Hence total work done = - mgh + mgh = 0.
The children will have same kinetic energy as the inclined surface is friction-less so no energy will be dissipated hence addition of energy to boys in both the cases will be same.
Answer:
the bending moment will be W from either sides
Explanation:
bending moment= force (load) * perpendicular distance, if I understand the question the distance will be 1/2 of the length
=> f x 1/2(l) =W*1/2(2) =W
Answer:
xitxitx
Explanation:
ufxigxigxitcutcocyocoycitcotcitcohcohxitxigcigxigxkgxigxigxigxigxigxigxitx8y
Answer:
A) 1.4167 × 10^(-11) F
B) r_a = 0.031 m
C) E = 3.181 × 10⁴ N/C
Explanation:
We are given;
Charge;Q = 3.40 nC = 3.4 × 10^(-9) C
Potential difference;V = 240 V
Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m
A) The formula for capacitance is given by;
C = Q/V
C = (3.4 × 10^(-9))/240
C = 1.4167 × 10^(-11) F
B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.
C = (4πε_o)/(1/r_a - 1/r_b)
Rearranging, we have;
(1/r_a - 1/r_b) = (4πε_o)/C
ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m
Plugging in the relevant values, we have;
(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))
(1/r_a) - 24.3902 = 7.8501
1/r_a = 7.8501 + 24.3902
1/r_a = 32.2403
r_a = 1/32.2403
r_a = 0.031 m
C) Formula for Electric field just outside the surface of the inner sphere is given by;
E = kQ/r_a²
Where k is a constant value of 8.99 × 10^(9) Nm²/C²
Thus;
E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²
E = 3.181 × 10⁴ N/C