Answer:
a reflection over the x-axis and then a 90 degree clockwise rotation about the origin
Step-by-step explanation:
Lets suppose triangle JKL has the vertices on the points as follows:
J: (-1,0)
K: (0,0)
L: (0,1)
This gives us a triangle in the second quadrant with the 90 degrees corner on the origin. It says that this is then transformed by performing a 90 degree clockwise rotation about the origin and then a reflection over the y-axis. If we rotate it 90 degrees clockwise we end up with:
J: (0,1) , K: (0,0), L: (1,0)
Then we reflect it across the y-axis and get:
J: (0,1), K:(0,0), L: (-1,0)
Now we go through each answer and look for the one that ends up in the second quadrant;
If we do a reflection over the y-axis and then a 90 degree clockwise rotation about the origin we end up in the fourth quadrant.
If we do a reflection over the x-axis and then a 90 degree counterclockwise rotation about the origin we also end up in the fourth quadrant.
If we do a reflection over the x-axis and then a reflection over the y-axis we also end up in the fourth quadrant.
The third answer is the only one that yields a transformation which leads back to the original position.
Lol you like maths? Honestly, I don't like it much b r u h
Answer:
5x + 6y = 20_____(1)
8x - 6y = -46_____(2)
Solving simultaneously:
Eqn(1) + Eqn(2)
5x + 8x + 6y + (-6y) = 20 + (-46)
13x = -26
x = -2
substituting this into Eqn (1):
5(-2) + 6y = 20
-10 + 6y = 20
6y = 30
y = 5
hence:
x = -2,y = 5.
4.3125 is the answer to that equation