Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters. Note that the volume is in liters of solution and not liters of solvent. When a molarity is reported, the unit is the symbol M and is read as “molar”.
I hope this helped :)
Please make me the branliest! Have a good night/ good day!!
The balanced chemical reaction is expressed as:
M + F2 = MF2
To determine the moles of the element fluorine present in the product, we need to determine the moles of the product formed from the reaction and relate this value to the ratio of the elements in MF2. We do as follows:
moles MF2 produced = 0.600 mol M ( 1 mol MF2 / 1 mol M ) = 0.600 mol MF2
molar mass MF2 = 46.8 g MF2 / 0.6 mol MF2 = 78 g/mol
moles MF2 = 46.8 g ( 1 mol / 78 g ) = 0.6 mol
moles F = 0.6 mol MF2 ( 2 mol F / 1 mol MF2 ) = 1.2 moles F
Answer:
an uncharged molecule (typically highly reactive and short-lived) having an unpaired valency electron.