<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>
POH value was calculated by the negative logarithm of hydroxide ion concentration.
To know the hydrogen ion concentration, we need to know the pH value, that can be found out if pOH is known
pH + pOH = 14
pH = 14 - pOH
pH = 10.65
once the pH is known we have to find the antilog.
[H⁺] = antilog (-pH)
antilog can be found by
[H⁺] = 10^(-10.65)
[H⁺] = 2.2 x 10⁻¹¹ M
Movement of molecules from an area of higher concentration to one of lower concentration is called Diffusion
<u>Answer:</u> The structure of the geometrical isomers are attached below.
<u>Explanation:</u>
Cis- and Trans- isomers are the geometrical isomers which have same chemical formula but different structural formula
According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as cis-form and if the highest priority groups are on opposite side, it is known as trans-form.
We are given a chemical compound, which is 2-pentene.
In this the highest priority groups are methyl and ethyl groups.
When the groups are on the same side, it forms cis-form and when the groups are on the opposite side, it forms trans-form
The structure of the geometrical isomers are attached below.