Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.
One mole of a substance is defined by Avogadro as consisting of 6.022 x 1023 atoms. This is Avogadro's number. To calculate the number of atoms in two moles of sodium, use dimensional analysis. 2.0 moles Na x 6.022⋅1023g1mol=1.20⋅1024 atoms of Na
density is mass/volume so we do
.115/.000265
433.962 g/mL
Answer:
6.67 moles
Explanation:
Given that:-
Moles of hydrogen gas produced = 10.0 moles
According the reaction shown below:-

3 moles of hydrogen gas are produced when 2 moles of aluminium undergoes reaction.
Also,
1 mole of hydrogen gas are produced when
moles of aluminium undergoes reaction.
So,
10.0 moles of hydrogen gas are produced when
moles of aluminium undergoes reaction.
<u>Moles of Al needed =
moles = 6.67 moles</u>