Answer:
C. More NO2 and SO2 will form
Explanation:
Le Chatelier's Principle : It predicts the behavior of equilibrium due to change in pressure , temperature , volume , concentration etc
It states that When external changes are introduced in the equilibrium then it will shift the equilibrium in a direction to reduce the change.
In given Reaction SO3 is introduced(increased) .
So equilibrium will shift in the direction where SO3 should be consumed(decreased)
Hence the equilibrium will go in backward direction , i.e

So more and more Of NO2 and SO2 will form
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!
I googled it, here it is lol
If a metal is less reactive than carbon, it can be extracted from its oxide by heating with carbon. The carbon displaces the metal from the compound, and removes the oxygen from the oxide. This leaves the metal.