Here, The relation between two angles is alternate exterior angles. And we know that alternate interior angles are equal, Let's find the value of x with the help of this statement...





- <em>I</em><em> </em><em>have</em><em> </em><em>attached</em><em> </em><em>a</em><em> </em><em>diagram</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>so</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>don't</em><em> </em><em>have</em><em> </em><em>any</em><em> </em><em>confusions</em><em>!</em><em> </em><em>Let</em><em> </em><em>me</em><em> </em><em>know</em><em> </em><em>if</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>any</em><em> </em><em>confusion</em><em> </em><em>left</em><em> </em><em>~</em>
Answer:
adjacent angle .................
To solve for V=1/3bh we need to do this:
v=bh/3
v * 3 = bh
3v = bh
b = 3v/h
Explanation: first reduce the fraction 1/3bh to bh/3, next multiply both sides by 3, then regroup the terms, and lastly divide both sides by h and u are done.
Answer:
E. 14x + 14
Step-by-step explanation:
4(3x + 2) + 2(x + 3) (distribute 4 to 3x and 2)
12x + 8 + 2(x + 3) (distribute 2 to the x and 3)
12x + 8 + 2x + 6 (collect like terms)
14x + 14
Hope this helps ya!!