Yes. For example x=-1 and y=-1/2
Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.
Ok this is a very question that can solved very easily. So we know that there three numbers, and they are consecutive, this means that they are all one bigger than the number before so for example 1,2, and 3 or 20, 21, and 22. These numbers are called consecutive. Now let's just pretend that the answer to this question is the variable "x". Now x is the smallest number in all the three numbers.
Using our knowledge of consecutive numbers we can say that the next to numbers will be one more than the number before so:
(x+1) and (x+2)
So we have our three numbers: x , x+1 , and x+2. Now let's set these numbers equal to 177.
177 = x + x + 1 + x + 2 → Combine like terms.
177 = 3x + 3 → Subtract 3 from both sides.
174 = 3x → Divide both sides by 3
58 = x
So that means that our first and smallest number is going to be 58 our second number will be +1 so 59 and our third number will be +2 so 60.
So the three numbers will be 58, 59, and 60.
Hope this helped.
Answer:
D
Step-by-step explanation:
It turns out from similar triangles, that 7/BD = BD / 18. Use triangles ABD and BDC to show this relationship. Solving this equation will give you BD
BD^2 = 7*18
BD^2 = 126 Just leave it in this form. Do your rounding at the end.
Because triangle BDC is a right angle triangle, use the Pythagorean Theorem to solve for m
m^2 = BD^2 + 7^2
m^2 = 126 + 49
m^2 = 175 Take the square root of both sides.
sqrt(m^2) = sqrt(175)
m = 13.22
so the answer is D
Its the last one
Y= rad x-5