Answer:
knee extension is the muscle function that will be difficult to perform.
Explanation:
Barb was kicked in the anterior thigh. Now, the thigh muscles performs a combined operation of moving the knee and leg and they reside in the following compartments.
- Anterior compartment which is composed of knee joint extension and thigh flexion.
- Lateral Compartment which is composed of the tensor fasciae latae, which is a tiny muscle that abducts and centrally will make the thigh to rotate.
-Medial compartment which involves thigh addiction which is rotating of the thigh around the hips.
- Posterior compartment which involves knee joint flexion and high extension.
Thus, from the different compartments listed above, we can see that the muscles that extend the knee and flex the thigh all lie in the anterior compartment of the upper leg.
Thus, we can conclude that knee extension is the muscle function that will be difficult to perform.
Answer:
Cost per year = $131.4
Explanation:
We are given;
Power rating of computer with monitor;P = 300 W = 0.3 KW
Cost of power per KWh = 15 cents = $0.15
Time used per day by the computer with monitor = 8 hours
Thus; amount of power consumed per 8 hours each day = 0.3 × 8 = 2.4 KWh per day
Thus, for 365 days in a year, total amount amount of power = 2.4 × 365 = 876 KWh
Now, since cost of power per KWh is $0.15, then cost for 365 days would be;
876 × 0.15 = $131.4
Answer:Friction force
Explanation:
The frictional force is responsible for stopping the moving object.
The friction force is provided by nature in the form of air resistance, fluid resistance, Surface resistance.
For surface resistance, the friction force is of two types namely kinetic friction force and static friction force.
Static friction acts when the object is stationary and a force is applied to cause the motion while kinetic friction acts when the body starts moving.
kinetic friction is lesser is in magnitude as compared to static friction.
Answer:
33.33 seconds
Explanation:

= Initial length pulled = 20 cm
b = Damping constant = 0.015 kg/s
k = Spring constant = 4 N/m
m = Mass of glider = 250 g
Time period is given by

Using exponential decay formula

Final amplitude = Initial times decay

The time taken is 33.33 seconds
The answer is 0 , hope this helps