1400, as 1200 + 200 = 1,400 and 1600 - 200 = 1400.
The answer to the question is: true
Answer:
See Below.
Step-by-step explanation:
We want to show that the function:

Increases for all values of <em>x</em>.
A function is increasing whenever its derivative is positive.
So, find the derivative of our function:
![\displaystyle f'(x) = \frac{d}{dx}\left[e^x - e^{-x}\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5Be%5Ex%20-%20e%5E%7B-x%7D%5Cright%5D)
Differentiate:

Simplify:

Since eˣ is always greater than zero and e⁻ˣ is also always greater than zero, f'(x) is always positive. Hence, the original function increases for all values of <em>x.</em>
Answer:
g(x) = sinh^-1 ( ln(7x^6 +3) / sqrt( 8+cot( x^( 3+x))))
Step-by-step explanation:
Using the fundamental theorem of calculus
Taking the derivative of the integral gives back the function
Since the lower limit is a constant when we take the derivative it is zero
d/dx 
g(t) = sinh^-1 ( ln(7t^6 +3) / sqrt( 8+cot( t^( 3+t))))
Replacing t with x
g(x) = sinh^-1 ( ln(7x^6 +3) / sqrt( 8+cot( x^( 3+x))))
The figure is NOT unique.
Imagine the following quadrilaterals:
Rectangle
Square
We know that:
Both quadrilaterals have at least two right angles.
However, they are not unique because they depend on the lengths of their sides.
Answer:
The figure described is not unique.