Answer:
140
Step-by-step explanation:
The arithmetic series is 5, 7, 9, 11, ........., 23.
First u have to determine the no. of terms that can be done by using
Tₙ = [a + (n - 1)d]
Tₙ-------nth term
a---------first term
n---------no.of terms in the series
d---------common difference
here a = 5,d = 2.
let it contain n terms Tₙ= [a + (n-1)d]
Substitute Tₙ, a, and d in the equation
23 = 5 + (n - 1)2
Subtract 5 from each side.
18 = (n-1)2
Divide each side by 2
(n - 1) = 9
Add 1 to each side
n = 9 + 1 = 10
The sum of the arithmetic sequence formula: Sₙ= (n/2)[2a+(n-1)d]
Substitute Sₙ, a, n and d in the equation
Sₙ= (10/2)[2(5) + (10-1)2]
Sₙ= (5)[10 + (9)2]
Sₙ= 5[10 + 18]
Sₙ= 5[28] = 140
Therefore the sum of the arithmetic sequence is 140.
The slope of XY is the same as the slope of AB because XY is parallel to AB. Parallel lines have the same slope.
The answer is A because all three of them have the same amount of coins
1a:
580 - (580 × .1) - 20
580 - (58) - 20
522 - 20
502
1b:
990 - (990 × .25) - 20
990 - (247.5) - 20
742.5 - 20
722.5
I'm not sure how to solve #2.