1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
2 years ago
13

Please help on test

Mathematics
1 answer:
dolphi86 [110]2 years ago
3 0

150 * 5/100=7.5

150+7.5=157.5$

145*7/100= 10.15

145+10.15= 155.15$

140*8/100= 11.2

140+11.2= 151.2$

135*9/100= 12.15

135+12.25= 147.15$

Purchase D is least Expensive. 147.15$

You might be interested in
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
2 years ago
From 42 acres to 72 acres (round to the nearest percent
guajiro [1.7K]

Answer:

42 acres to 72 acres, there is an increase of 30 acres

percentage wise

72-42=30

30/72=.4166...

therefore there is also a 41.6% increase

Step-by-step explanation:

71.42 Percentage change:×100%

Now, the change is given from 42 acres to 72 acres, therefore

Change= 72-42=30

⇒Percentage change= ×100%

                                   = 71.42

8 0
3 years ago
Andrea is a teacher. Her annual salary is $59,605. Her salary is dispersed to her semimonthly from September – June (10 months).
Brilliant_brown [7]

Answer:

don't know trying to get the ANSWER

7 0
3 years ago
A random sample of 20 houses selected from a city showed that the mean size of these houses is 1880 square feet with a standard
azamat

Answer:

Option C

Step-by-step explanation:

Given that for a  random sample of 20 houses selected from a city showed that the mean size of these houses is 1880 square feet with a standard deviation of 320 square feet.

X, the sizes of houses is Normal

Hence sample mean will be normal with

Mean = 1880

and std dev = \frac{320}{\sqrt{20} } \\=71.5542

For 90% confidence interval critical value for t with degree of freedom 19 is

1.328

Confidence interval upper bound

= mean + margin of error

= 1880+1.328*71.55\\=1975

Option C is right

3 0
3 years ago
The estimated value of the integral from 0 to 2 of x cubed dx , using the trapezoidal rule with 4 trapezoids is
bulgar [2K]
The integral is approximated by the sum,

\displaystyle\int_0^2f(x)\,\mathrm dx\approx\sum_{n=0}^4\frac12\times\frac{f(x_n)+f(x_{n+1})}2=\frac14\sum_{n=0}^3(f(x_n)+f(x_{n+1}))

where f(x)=x^3 and x_n=\dfrac12n, giving you

\displaystyle\frac14\sum_{n=0}^3\bigg(\left(\frac n2\right)^3+\left(\frac{n+1}2\right)^3\bigg)
\displaystyle\frac1{32}\sum_{n=0}^3(n^3+(n+1)^3)
\displaystyle\frac1{32}\sum_{n=0}^3(2n^3+3n^2+3n+1)

Faulhaber's formulas make short work of computing the sum. You have

\displaystyle\sum_{n=0}^k1=k+1
\displaystyle\sum_{n=0}^kn=\frac{k(k+1)}2
\displaystyle\sum_{n=0}^kn^2=\frac{k(k+1)(2k+1)}6
\displaystyle\sum_{n=0}^kn^3=\frac{k^2(k+1)^2}4

which gives

\displaystyle\frac1{16}\sum_{n=0}^3n^3+\frac3{32}\sum_{n=0}^3n^2+\frac3{32}\sum_{n=0}^3n+\frac1{32}\sum_{n=0}^31
\displaystyle\frac{36}{16}+\frac{42}{32}+\frac{18}{32}+\frac4{32}
\implies\displaystyle\int_0^2x^3\,\mathrm dx\approx\frac{17}4=4.25
4 0
3 years ago
Other questions:
  • The handy family drinks 20 pints of milk each week.How many gallons of milk do they drink each week?
    15·1 answer
  • Enter the degree of the polynomial below .
    7·2 answers
  • Which answer shows y + 2x < 4x-3
    7·2 answers
  • 2x + 3x + 4 equals .
    15·1 answer
  • Simplify the expression.<br>(-2) 5<br>оооо​
    15·1 answer
  • Is y=−7x+16 exponential, state if it is growth or decay
    12·1 answer
  • How many meters are in 12 kilometers?
    6·1 answer
  • Ratio of 4 to 10= (?) %
    12·2 answers
  • If 2&lt;x&lt;4 and 3&lt;y&lt;7 the largest integer value of x+y is​
    12·1 answer
  • Hi please help me no links thank you
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!