Answer:
The intermediate step are;
1) Separate the constants from the terms in x² and x
2) Divide the equation by the coefficient of x²
3) Add the constants that makes the expression in x² and x a perfect square and factorize the expression
Step-by-step explanation:
The function given in the question is 6·x² + 48·x + 207 = 15
The intermediate steps in the to express the given function in the form (x + a)² = b are found as follows;
6·x² + 48·x + 207 = 15
We get
1) Subtract 207 from both sides gives 6·x² + 48·x = 15 - 207 = -192
6·x² + 48·x = -192
2) Dividing by 6 x² + 8·x = -32
3) Add the constant that completes the square to both sides
x² + 8·x + 16 = -32 +16 = -16
x² + 8·x + 16 = -16
4) Factorize (x + 4)² = -16
5) Compare (x + 4)² = -16 which is in the form (x + a)² = b
Answer:
(7, 24, 26)
Step-by-step explanation:
A Pythagorean triple must have an odd number of even numbers. The triple (7, 24, 26) is not a Pythagorean triple.
_____
<em>Additional comment</em>
For an odd integer n, a triple can be formed as ...
(n, (n²-1)/2, (n²+1)/2)
That is, the following will be Pythagorean triples.
- (3, 4, 5)
- (5, 12, 13)
- (7, 24, 25)
- (9, 40, 41)
- (11, 60, 61)
Another series involves even numbers and numbers separated by 2:
(2n, n²-1, n²+1)
- (8, 15, 17)
- (12, 35, 37)
- (16, 63, 65)
In this list, if n is not a multiple of 2, the triple will be a multiple of one from the odd-number series.
It is a good idea to remember a few of these, as they tend to show up in Algebra, Geometry, and Trigonometry problems.
Answer:
40
Step-by-step explanation:
you mutiply then take away the 2 last digits
Answer:
the 1st one
Step-by-step explanation:
i hope its right
sorry if worng