The decay of uranium isotopes is used to provide information about the age of Earth.
<h3>
Explanation:</h3>
Isotopes of Uranium U-232, U-233 , U-234 , U-235 , U-236 , U-238 are used as fuel in nuclear reactors or as explosives for nuclear weapons. Uranium 238 is not very radioactive and it constitutes for nearly 99.3% of natural uranium on Earth and has the longest lifetime: its period is 4.5 billion years, about the age of Earth.
Use of radiometric dating techniques help in defining the age of substances (natural or man-made) using the known decay rates of radioactive elements. Each element has an individual decay rate and half life time.
Two Uranium isotopes (U-238 and U-235) are used for radiometric dating. Both the isotopes have different decay rates and half life period. Both are unstable and radioactive. Since two different isotopes produce two different decay clocks (one as a reference to other), it is beneficial in accurately determining the age of samples. The age of earth (rocks or other natural elements) can be easily determined using Uranium isotopes.
Answer:
Substrate-level phosphorylation, which is a process of forming ATP by the physical addition of a phosphate group to ADP can take place in the cytoplasm during glycolysis or inside the mitochondrial matrix during the Krebs cycle.
Explanation:
Substrate-level phosphorylation is a metabolic reaction that results in the formation of ATP or GTP by the direct transfer of a phosphoryl (PO3) group to ADP or GDP from another phosphorylated compound.
Antibiotics are ineffective against viruses because viruses do not have cells. Viruses are infectious agents that live within the cells of other living things. Antibiotics work by breaking down the cell walls of bacteria or interfering with the bacteria's ability to repair its cell's DNA, according to How Stuff Works.
b is the right answer because we breathe oxygen and when we breathe out we let out carbon dioxide