Answer:
- 6
Step-by-step explanation:
Given
y = 3(x - 1)(x + 2) ← expand factors using FOIL
= 3(x² + x - 2) ← distribute by 3
= 3x² + 3x - 6
To find the y- intercept let x = 0, thus
y = 3(0)² + 3(0) - 6 = 0 + 0 - 6 = - 6
Thus y- intercept = - 6 ⇒ (0, - 6 )
Answer:
Step-by-step explanation:
This is a third degree polynomial since we have 3 zeros. We find these zeros by factoring the given polynomial. The zeros of a polynomial are where the graph of the function goes through the x-axis (where y = 0). If x = -4, the factor that gives us this value is (x + 4) = 0 and solving that for x, we get x = -4. If x = -2, the factor that gives us that value is (x + 2) = 0 and solving that for x, we get x = -2. Same for the 5. The way we find the polynomial that gave us these zeros is to go backwards from the factors and FOIL them out. That means that we need to find the product of
(x + 4)(x + 2)(x - 5). Do the first 2 terms, then multiply in the third.
, which simplifies to

No we multiply in the final factor of (x - 5):
which simplifies to

If you are aware of the method for factoring higher degree polymomials, which is to use the Rational Root Theorem and synthetic division, you will see that this factors to x = -4, -2, 5. If you know how to use your calculator, you will find the same zeros in your solving polynomials function in your apps.
The square root of 18 is 4.24
$13.52-$2=$11.52

Kareem was billed for 96 minutes.
Hope this helps. - M
Answer:
a) 0.0167
b) 0
c) 5.948
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 6.16 ounces
Standard Deviation, σ = 0.08 ounces
We are given that the distribution of fill volumes of bags is a bell shaped distribution that is a normal distribution.
Formula:
a) Standard deviation of 23 bags

b) P( fill volume of 23 bags is below 5.95 ounces)
P(x < 5.95)
Calculation the value from standard normal z table, we have,
c) P( fill volume of 23 bags is below 6 ounces) = 0.001
P(x < 6) = 0.001
Calculation the value from standard normal z table, we have,


If the mean will be 5.948 then the probability that the average of 23 bags is below 6.1 ounces is 0.001.