1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
15

Simplify the expression −2.3(4.1a−1.7a)+1.9(−5.4b)

Mathematics
1 answer:
Thepotemich [5.8K]3 years ago
7 0

Answer:

-5.52a-10.26b

Step-by-step explanation:

2.3*4.1=9.43

2.3*1.7=3.91

1.9*5.4=10.26

-------------------

-9.43a+3.91a-10.26b

-5.52a-10.26b

You might be interested in
Can someone answer this question please?
tester [92]

Answer:

(6, 1)

Step-by-step explanation:

plug in 6 for x and 1 for y in the given equation.

(6) - 3(1) = 3

then use PEMDAS to solve the equation.

-3 x 1 = -3

6 - 3 = 3

3 = 3

this ordered pair is correct because both 6 and 1 make the equation true.

3 0
3 years ago
F(x)=3x+5/c what is f(a+2) ?
vivado [14]
Hello :
<span>f(x)=3x+5/c
</span><span>f(a+2) = (3(a+2)+5)/c = (3a+11)/c</span>
8 0
3 years ago
After selling one third of his apple crop, a farmer sold the remainder at the same price per bushel for $600. What was the value
shtirl [24]
300. if you sold a third. then 2/3 would be left. you can then infer each is 300. Hope This Helps.
5 0
3 years ago
Use the given information to write the equation of each line
Pachacha [2.7K]

Answer:

<h2>y = -3x - 1</h2>

Step-by-step explanation:

The slope-intercept form of an equation of a line:

y=mx+b

<em>m</em><em> - slope</em>

<em>b</em><em> - y-intercept</em>

The formula of a slope:

m=\dfrac{y_2-y_1}{x_2-x_1}

We have two points (1, -4) and (-2, 5).

Substitute:

m=\dfrac{5-(-4)}{-2-1}=\dfrac{5+4}{-3}=\dfrac{9}{-3}=-3

Substitute the value of a slope and the coordinates of the point (1, -4) to the equation of a line:

-4=-3(1)+b

-4=-3+b            <em>add 3 to both sides</em>

-4+3=-3+3+b

-1=b\to b=-1

Finally:

y=-3x-1

5 0
3 years ago
Use the limit definition of the derivative to find the slope of the tangent line to the curve
ale4655 [162]

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

3 0
3 years ago
Other questions:
  • Determine whether the statement is sometimes, always, or never true.
    14·1 answer
  • Help answer ASAPPP 10 points
    5·2 answers
  • Which division equation is shown by the area model intop?
    10·1 answer
  • Ted and Alan are in a race to double their money. Ted feels he will win if he puts his $4,000 into a savings account offering 4.
    12·2 answers
  • 2X minus one equals five
    9·2 answers
  • Given that B is between A and C, find the indicated length.
    10·1 answer
  • How many little of water are there in volume pool 2m when it is three- quarter full
    14·1 answer
  • What is the length of YZ​
    14·2 answers
  • Mary says that -5 x 2 = -3. Explain the mistake Mary made and write the correct number sentence including the correct answer.
    13·2 answers
  • So is it just me or is my inbox getting notifications and nothing is there????
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!