1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
3 years ago
14

Sketch the graphs - 2y – 3=x​

Mathematics
1 answer:
Dominik [7]3 years ago
3 0

Answer:

this should be correct try mathaway but instead of away make it way. it won't let me say the actual name

You might be interested in
What are the important things to remember or be careful about when adding and subtracting polynomials?
prisoha [69]
Be careful you don't add unlike terms together (e.g. x^2 and x cannot be added or subtracted together). 
<span>Be careful you don't mistake the 2 in x^2 as another number. Same for x^3, x^4. etc.</span>
8 0
4 years ago
Is the following inequality true : 4 &lt;_ 4 ?
marissa [1.9K]

Answer:

Yes

Step-by-step explanation:

This is true because it is asking you if this is less than or EQUAL TO. 4 = 4, making it true.

8 0
2 years ago
What is 2x - 3 = -x + 3
BARSIC [14]
<span>Simplifying 2x + -3 = -1x + 3
 Reorder the terms: -3 + 2x = -1x + 3
 Reorder the terms: -3 + 2x = 3 + -1x Solving -3 + 2x = 3 + -1x
 Solving for variable 'x'.
 Move all terms containing x to the left, all other terms to the right. Add 'x' to each side  of the equation. -3 + 2x + x = 3 + -1x + x
 Combine like terms: 2x + x = 3x -3 + 3x = 3 + -1x + x
 Combine like terms: -1x + x = 0 -3 + 3x = 3 + 0 -3 + 3x = 3
 Add '3' to each side of the equation. -3 + 3 + 3x = 3 + 3
 Combine like terms: -3 + 3 = 0 0 + 3x = 3 + 3 3x = 3 + 3
 Combine like terms: 3 + 3 = 6 3x = 6
 Divide each side by '3'. x = 2
 Simplifying x = 2

answer x=2

Hope I Helped:D</span>
7 0
3 years ago
Read 2 more answers
A market research company wishes to know how many energy drinks adults drink each week. They want to construct a 80% confidence
Diano4ka-milaya [45]

Answer:

The confidence interval = (7.8 , 8.0)

Step-by-step explanation:

Confidence Interval formula =

Mean ± z × Standard deviation/√n

Mean = 7.9

Standard deviation = 0.9

n = number of samples = 164

z = z score of an 80% confidence interval = 1.282

Confidence Interval = 7.9 ± 1.282 × 0.9/√164

= 7.9 ± 0.0900966432

Confidence Interval

= 7.9 - 0.0900966432

= 7.8099033568

Approximately to 1 decimal place = 7.8

7.9 + 0.0900966432

= 7.9900966432

Approximately to 1 decimal place = 8.0

Therefore, the confidence interval = (7.8 , 8.0)

7 0
3 years ago
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value
vodomira [7]

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

5 0
3 years ago
Other questions:
  • What's the equivalent fraction of 8/9 and 3/11
    9·1 answer
  • Can someone help me with this?
    6·1 answer
  • Y = 2 - 6x<br>17 y - x=1 solve the system​
    6·1 answer
  • if a circular rug has a radius of 1 yard. what is the area of the rug to the nearest tenth of a square foot
    9·1 answer
  • Which of the following would be a good argument to lease rather than buy?
    9·2 answers
  • Question Five
    15·1 answer
  • Use log tables to find the value of 0.8176x13.64
    5·1 answer
  • Multiply the following complex numbers. Reduce terms and simplify. Explain how your simplified result and the first term in the
    10·1 answer
  • Find the slope of the line below using rise/run.<br>​
    9·2 answers
  • 3 and 1/3 + 4 and 5/7 =
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!