1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
3 years ago
13

Maria buys 2 dozen pens at $7.20 a dozen. she then sells the pens at 80c each. calculate her profit​

Mathematics
1 answer:
Luda [366]3 years ago
3 0
Her profit is $4.80 :)

$7.20•2=$14.40
24 pens • $0.80 =$19.20
$19.20-$14.40=$4.80 profit :)
You might be interested in
Can some one help me with this question: <br> Solve 5x-22=20
Annette [7]

Answer: x = 8.4

Work: So, the goal of this equation is to get x by itself, and the first thing we need to do is get 22 out of that current side. To do that, we are going to add 22 on both sides, cancelling it on the side it's currently on. So, the new equation is 5x = 42. Now, we need to divide 5 on both sides, and like I said, I'll cancel on the side it's currently on. So, the answer is x = 8.4

<em>I hope this helps, and Happy Holidays! :)</em>

7 0
3 years ago
Read 2 more answers
10 points !!!!!! Help
Mars2501 [29]
Here’s a chart to help you.

5 0
3 years ago
Read 2 more answers
What expression represents the length of the rectangle ?
saul85 [17]

Answer:

rectangle had an area of x2+13x+36 square meters the length of x+9 meters. What expression represents the width of the rectangle?

Step-by-step explanation:

7 0
3 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Pls can some one help if you like
Snezhnost [94]
Slope is rise/run
gains 4m height for every 3secons
rise=4m
run=3sec
slope=4/3

if takes 54seconds t
54 times 4/3=72 meters

max height is 72 meteres assuming that it starts from the ground level
4 0
3 years ago
Other questions:
  • To increase an amount by 28%, multiply by
    12·2 answers
  • Ralph Jordan recently bought a new lawnmower for $228.00. If he paid 6% sales tax on the lawnmower, what was the total cost of t
    5·1 answer
  • Plz help me with my math :)
    7·1 answer
  • 30 POINTS, PLEASE HELP ASAP!
    12·2 answers
  • PLEASE HELP I NEED THE ANSWER TO THIS!!!
    9·1 answer
  • Emanuel surveyed a random sample of 50 subscribers to Auto Wheel magazine about the number of cars that they own. Of the subscri
    6·2 answers
  • A ribbon of length 3meters is to be cut into strips of length 14centimeters. How many strips of lengths 14centimeters were cut?
    11·1 answer
  • In a triangle, what is always opposite the angle that has the LEAST measure?
    6·2 answers
  • Someone please help im dumb =)
    6·1 answer
  • if teen romance had 20% in a circle graph and 4,000 books were signed out in the summer how many of them were teen romance
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!