Answer:
The first harmonic is: 250Hz, second harmonic 500Hz, third harmonic 750Hz.
Explanation:
Use the frequency f, speed v, and wavelentgh L relationship:

We are given the speed v=400 m/s. The base wavelength on a string of length 80cm is twice the length of the string (a "half wave" along the full length of the string), so:

The fundamental frequency (first harmonic) is 250 Hz
The second harmonic is produced by one full wave across the string (adding one node in the middle), so L=80cm in this case, therefore the second harmonic frequency is: f2 = 2*250=500Hz
the third harmonic add another node (and a half wave) to the pattern and the wavelength will be 2/3 of 80cm, so f3=3*250Hz = 750Hz
The gravitational effect of the moon causes both the high tide and low tides.
Answer:
Gravitational lensing is how we know there is dark matter
What this means is that the light is bending as the light travels from the source to the observer, and if there are any 'holes' in between the beam, that is where 'dark matter' exists
Explanation:
Answer:
Respuesta. Explicación: Viene del inglés significa retraso, es un efecto de sonido que consiste en la multiplicación y retraso modulado de una señal sonora. Una vez procesada la señal se mezcla con la original.
Explanation:
Explanation:
Gauss Law relates the distribution of electric charge to the resulting electric field.
Applying Gauss's Law,
EA = Q / ε₀
Where:
E is the magnitude of the electric field,
A is the cross-sectional area of the conducting sphere,
Q is the positive charge
ε₀ is the permittivity
We be considering cases for the specified regions.
<u>Case 1</u>: When r < R
The electric field is zero, since the enclosed charge is equal to zero
E(r) = 0
<u>Case 2</u>: When R < r < 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = Q / ε₀
E = Q / 4πε₀r²
E = KQ /r²
Constant K = 1 / 4πε₀ = 9.0 × 10⁹ Nm²/C²
<u>Case 3</u>: When r > 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = 2Q / ε₀
E = 2Q / 4πε₀r²
E = 2KQ /r²