Answer:
For less than 7 uniforms.
Step-by-step explanation:
The first company she called charges $70 per uniform.
So, the cost of x uniforms will be $70x.
The second company she called charges $280 plus $30 per uniform.
So, the cost of x uniform will be $(280 + 30x).
Now, if the total cost of purchasing x number of uniforms from the first company is less than that from the second company then, we can write the inequality equation as
70x < 280 + 30x
⇒ 70x - 30x < 280
⇒ 40x < 280
⇒ x < 7
Therefore, for less than 7 uniforms the cost from the first company will be less than the cost from the second company. (Answer)
First you need to find the percent equivalent to that of the ratio. The ratio is 3:5. From there you would take the 3, and divide it by 5. 3/5=0.6. Apply that to the information that you are given: 8(0.6)=4.8.
0.20 would be the answer.
The number places on a number go as follows starting at 0. and going to the right
ones, tenths, hundredth
This means that 0.00 is the hundredth place (the bolded 0). Since you round a 9 up one, this makes the 1 in the tenths place go to a 2 and the hundredth go to a 0
Answer:
f(x) > 0 over the interval 
Step-by-step explanation:
If f(x) is a continuous function, and that all the critical points of behavior change are described by the given information, then we can say that the function crossed the x axis to reach a minimum value of -12 at the point x=-2.5, then as x increases it ascends to a maximum value of -3 for x = 0 (which is also its y-axis crossing) and therefore probably a local maximum.
Then the function was above the x axis (larger than zero) from
, until it crossed the x axis (becoming then negative) at the point x = -4. So the function was positive (larger than zero) in such interval.
There is no such type of unique assertion regarding the positive or negative value of the function when one extends the interval from
to -3, since between the values -4 and -3 the function adopts negative values.
<span>The
value of the determinant of a 2x2 matrix is the product of the top-left
and bottom-right terms minus the product of the top-right and
bottom-left terms.
The value of the determinant of a 2x2 matrix is the product of the top-left and bottom-right terms minus the product of the top-right and bottom-left terms.
= [ (1)(-3)] - [ (7)(0) ]
= -3 - 0
= -3
Therefore, the determinant is -3.
Hope this helps!</span>