For this case we have:
: Let the variable representing the first odd number
: Let the variable representing the consecutive odd number at x.
According to the statement we have:
![x (x + 2) = 63\\x ^ 2 + 2x = 63\\x ^ 2 + 2x-63 = 0](https://tex.z-dn.net/?f=x%20%28x%20%2B%202%29%20%3D%2063%5C%5Cx%20%5E%202%20%2B%202x%20%3D%2063%5C%5Cx%20%5E%202%20%2B%202x-63%20%3D%200)
We found the solution by factoring:
We look for two numbers that, when multiplied, result in -63 and when added, result in 2. These numbers are +9 and -7.
![9-7 = 2\\9 * (-7) = -63](https://tex.z-dn.net/?f=9-7%20%3D%202%5C%5C9%20%2A%20%28-7%29%20%3D%20-63)
Thus, we have:
![(x + 9) (x-7) = 0](https://tex.z-dn.net/?f=%28x%20%2B%209%29%20%28x-7%29%20%3D%200)
Therefore the solutions are:
![x_ {1} = - 9\\x_ {2} = 7](https://tex.z-dn.net/?f=x_%20%7B1%7D%20%3D%20-%209%5C%5Cx_%20%7B2%7D%20%3D%207)
We choose the positive value, so we have:
![x = 7\\x + 2 = 7 + 2 = 9](https://tex.z-dn.net/?f=x%20%3D%207%5C%5Cx%20%2B%202%20%3D%207%20%2B%202%20%3D%209)
Answer:
The largest number is 9