The weight of a ship is frequently called its "displacement" since that's the weight of the water that it uproots. It'll drift when it uproots a volume of water whose weight is break even with the weight of the ship -- this can be the buoyant drive given by the water. New water in an inland lake features a littler density than that of ocean water. Hence, a larger volume of new water is vital to supply the same weight or buoyant force. This implies the ship will ride lower in an inland lake and will ride higher within the sea.
<h3>what is buoyant force?</h3>
When an object is set in a liquid, the liquid applies an upward force we call the buoyant force. The buoyant force comes from the weight applied to the question by the liquid. Since the weight increments as the profundity increments, the weight on the foot of an object is continuously bigger than the force on the best - consequently the net upward force. The buoyant force is present whether the question coasts or sinks.
To learn more about buoyant force, visit;
brainly.com/question/7379745
#SPJ4
It causes the greenhouse effect
Answer:
the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Explanation:
Given the data in the question and as illustrated in the diagram below.
speed of the ship v = 0.90c
base of the ladder from the wall x₀ = 3.0 m
top of the later above the floor y = 4.0 m
we determine angle θ.
from the diagram,
tanθ = y/x₀
tanθ = y / x₀√( 1 - v²/c² )
we substitute
tanθ = 4.0 / 3.0√( 1 - ((0.9c)²/c²) )
tanθ = 4.0 / 3.0√( 1 - ((0.9²)c²/c²) )
tanθ = 4.0 / 3.0√( 1 - (0.9²) )
tanθ = 4.0 / 3.0√( 1 - 0.81 )
tanθ = 4.0 / 3.0√0.19
tanθ = 4.0 / 1.30766968
tanθ = 3.058876
θ = tan⁻¹( 3.058876 )
θ = 71.8965 ≈ 71.9°
Therefore, the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°