Answer:
The length of the chord is 16 cm
Step-by-step explanation:
Mathematically, a line from the center of the circle to a chord divides the chord into 2 equal portions
From the first part of the question, we can get the radius of the circle
The radius form the hypotenuse, the two-portions of the chord (12/2 = 6 cm) and the distance from the center to the chord forms the other side of the triangle
Thus, by Pythagoras’ theorem; the square of the hypotenuse equals the sum of the squares of the two other sides
Thus,
r^2 = 8^2 + 6^2
r^2= 64 + 36
r^2 = 100
r = 10 cm
Now, we want to get a chord length which is 6 cm away from the circle center
let the half-portion that forms the right triangle be c
Using Pythagoras’ theorem;
10^2 = 6^2 + c^2
c^2 = 100-36
c^2 = 64
c = 8
The full
length of the chord is 2 * 8 = 16 cm
Step-by-step explanation:
all work is shown and pictured
The plane PRS passes through the points P, R and S. So it contains the line RS. Also the plane QRS passes through the points Q, R and S. So it contains the line RS as well. Since both the planes contain the line RS, the line RS must be the intersection of plane PRS and QRS
Answer it's a closed dot on positive 2 going to the left
Step-by-step explanation:

To find expanded form, we need to split up the digits. When you do that, you take one digit and cut off everything to the left of it, then make everything to the right zeros.

We don't need to keep the zeros.

We can check this by adding the numbers back up to get
.


