Answer:
35 sq units
Step-by-step explanation:
Answer:
If
whenever
f is <em>increasing</em> on I.
If
whenever
f is <em>decreasing</em> on I.
Step-by-step explanation:
These are definitions for real-valued functions f:I→R. To help you remember the definitions, you can interpret them in the following way:
When you choose any two numbers
on I and compare their image under f, the following can happen.
. Because x2 is bigger than x1, you can think of f also becoming bigger, that is, f is increasing. The bigger the number x2, the bigger f becomes.
. The bigger the number x2, the smaller f becomes so f is "going down", that is, f is decreasing.
Note that this must hold for ALL choices of x1, x2. There exist many functions that are neither increasing nor decreasing, but usually some definition applies for continuous functions on a small enough interval I.
According to my examination I have confirmed that I do NOT repeat do NOT know this.
I could help you, but how many paper clips were there? divide 7.20 by whatever number it is...