Answer:
1/2
Step-by-step explanation:
For each two units that this line moves to the right, it rises one. This means that it has a slope of 1/2. Hope this helps!
Answer:
1)Evaluate the left-hand side expression at the given value to get a number.
2)Evaluate the right-hand side expression at the given value to get a number.
3)See if the numbers match.
Sorry if wrong
Answer is D
Mark me the brainliest
Answer:
89.1° or -1.4°
Step-by-step explanation:
1. Location:
You are on the Mont-Saint-Jean escarpment, near the Belgian town of Waterloo.
The French troops are about 50 m below you and 1.2 km distant.
2. Finding the firing angle
Data:
R = 1200 m
u = 600 m/s
h = -50 m (the height of the target)
a = 9.8 m/s²
We have two conditions.
Horizontal distance
(1) 1200 = 600t cosθ
Vertical distance
(2) -50 = 600t sinθ - 4.9t²
Divide each side of (1) by 600cosθ.

Substitute (3) into (2)

Recall that
(5) sec²θ = 1/cos²θ = tan²θ + 1
Substitute (5) into (4)

Set up a quadratic equation

Solve for θ
Use the quadratic formula.
tanθ = 61.249 or -0.025
θ = arctan(61.249) = 89.1° or
θ = arctan(-0.025) = -1.4°
Substitute

, so that

![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dz}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dz}+\dfrac1x\left(\dfrac1x\dfrac{\mathrm d^2y}{\mathrm dz^2}\right)=\dfrac1{x^2}\left(\dfrac{\mathrm d^2y}{\mathrm dz^2}-\dfrac{\mathrm dy}{\mathrm dz}\right)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%2B%5Cdfrac1x%5Cleft%28%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D%5Cright%29%3D%5Cdfrac1%7Bx%5E2%7D%5Cleft%28%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D-%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%29)
Then the ODE becomes


which has the characteristic equation

with roots at

. This means the characteristic solution for

is

and in terms of

, this is

From the given initial conditions, we find


so the particular solution to the IVP is