Answer:
Four unique planes
Step-by-step explanation:
Given that the points are non co-planar, triangular planes can be formed by the joining of three points
The points will therefore appear to be at the corners of a triangular pyramid or tetrahedron such that together the four points will form a three dimensional figure bounded by triangular planes
The number of triangular planes that can therefore be formed is given by the combination of four objects taking three at a time as follows;
₄C₃ = 4!/(3!×(4-3)! = 4
Which gives four possible unique planes.
Answer: 975
Step-by-step explanation:
The cost would be 975
Answer:
270 Different Combo's
Step-by-step explanation:
The answer to your question is: Yes, someone undoubtedly can.
Although you haven't asked to be told or shown how to solve it, I'm here
already, so I may as well stick around and go through it with you.
The sheet is telling you to find the solutions to two equations, AND THEN
DO SOMETHING WITH THE TWO SOLUTIONS. But you've cut off the
instructions in the pictures, so all we have are the two equations, and
you'll have to figure out what to do with their solutions.
<u>First equation:</u>
(2/5) x - 6 = -2
Add 6 to each side:
(2/5) x = 4
Multiply each side by 5:
2x = 20
Divide each side by 2 :
<u>x = 10</u>
<u>Second equation:</u>
-3y + 1/4 = 13/4
Subtract 1/4 from each side:
-3y = 12/4
Multiply each side by 4 :
-12 y = 12
Divide each side by -12 :
<u> y = -1</u>