1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
2 years ago
9

Simplify: {(12)^1 + (13)^-1}/[(1/5)^-2 × {(1/5)^-1 + (1/8)^-1}^-1]​

Mathematics
2 answers:
GaryK [48]2 years ago
4 0
Answer : 1/20

Explanation:

CaHeK987 [17]2 years ago
3 0

Step-by-step explanation:

\underline{\underline{\sf{➤\:\:Solution}}}

\sf \dashrightarrow \:  \dfrac{ \left(\left(12 \right)^{ - 1}  + \left(13 \right)^{ - 1}  \right) }{\left( \dfrac{1}{5}\right) ^{ - 2}  \times\left( \left( \dfrac{1}{5}  \right) ^{ - 1}  +\left( \dfrac{1}{8}  \right) ^{ - 1}  \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{1}{12}  + \dfrac{1}{13} \right) }{\left( \dfrac{5}{1}\right) ^{ 2}  \times\left( \dfrac{5}{1}  + \dfrac{8}{1}   \right) ^{ - 1}}

  • LCM of 12 and 13 is 156

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{1 \times 13 = 13}{12 \times 13 = 156}  + \dfrac{1 \times 12 = 12}{13 \times 12 = 156} \right) }{\ \dfrac{25}{1} \times\left( \dfrac{5 + 8}{1}    \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{13}{156}  + \dfrac{12}{156} \right) }{\ \dfrac{25}{1} \times\left( \dfrac{13}{1}    \right) ^{ - 1}}

\sf \dashrightarrow \:  \dfrac{ \left(\dfrac{13 + 12}{156}  \right) }{\ \dfrac{25}{1} \times\dfrac{1}{13} }

\sf \dashrightarrow \:    \dfrac{25}{156} \div    \dfrac{25}{13}

\sf \dashrightarrow \:    \dfrac{ \cancel{25}}{156}  \times    \dfrac{13}{ \cancel{25} }

\sf \dashrightarrow \:     \dfrac{13}{156}

\sf \dashrightarrow \:     \dfrac{1}{12}

\sf \dashrightarrow \:    Answer =   \underline{\boxed{ \sf{ \dfrac{1}{12} }}}

━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{★\:\:Laws\:of\: Exponents :}}}

\sf \: 1^{st} \: Law = \bigg( \dfrac{m}{n} \bigg)^{a} \times \bigg( \dfrac{m}{n} \bigg)^{b} = \bigg( \dfrac{m}{n} \bigg)^{a + b}

\sf 2^{nd} \: Law =

\sf Case : (i) \: if \: a > b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \bigg( \dfrac{m}{n}\bigg)^{a - b}

\sf Case : (ii) \: if \: a < b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \dfrac{1}{\bigg( \dfrac{m}{n}\bigg)^{b - a}}

\sf \: 3^{rd} \: Law = \bigg\{ \bigg( \dfrac{m}{n} \bigg)^{a} \bigg\}^{b} = \bigg( \dfrac{m}{n} \bigg)^{a \times b} =\bigg( \dfrac{m}{n} \bigg)^{ab}

\sf \: 4^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{ - 1} = \bigg( \dfrac{n}{m} \bigg) =\dfrac{n}{m}

\sf \: 5^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{0} = 1

You might be interested in
A line passes through the point (10,-8) and has a slope of negative 3/2Write an equation in slope-intercept form for this line.
zhuklara [117]

Answer:

9383

Step-by-step explanation:

4 0
3 years ago
how much money has to be invested at 5.9% interest compounded continuously to have 15,000 after 12 years?
Scrat [10]
Hi there

The formula is
A=pe^rt
We need to solve for p where
A future value 15000
P present value?
E constant
R interest rate 0.059
T time 12 years
So when you solve for p you get
P=A÷e^rt
P=15,000÷e^(0.059×12)
P=7,389.43

Hope it helps
6 0
3 years ago
Read 2 more answers
2x2 + 3x ANSWER TO THIS
igomit [66]

Answer:

x(2x+3)

Step-by-step explanation:

Im guessing 2x2 is 2x^2

2x^2 + 3x = 0

x(2x+3)

3 0
3 years ago
If one minute on the clock =6 degrees 12 minutes =
Minchanka [31]
72° since it’s 6 degrees per minute you can do 6x12 and that will get you 72°
5 0
3 years ago
Read 2 more answers
Plz help the question is the Photo
Inga [223]
A>2.8

start at 2.8 on the number line, using the last symbol move it to the right

----------->
5 0
3 years ago
Other questions:
  • A boat costs $15,750 and decreases in value by 5% per year how much will it be worth after 14 years?
    14·2 answers
  • Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two sides
    7·1 answer
  • How would you solve #2 and #3?
    12·1 answer
  • Expand than simplify: -4(-2p+5)
    10·1 answer
  • Help I am stuck can anyone solve it
    11·1 answer
  • Which triangles are similar?
    14·1 answer
  • Best way to find slope​
    5·1 answer
  • How to write-x^2-x+4 in descending order
    13·2 answers
  • What is the missing leg length
    10·2 answers
  • Write an expression to represent:<br> 6 times the difference of 5 and 2.​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!