1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
15

Work out m and c for the line: 3 y + 6 x = − 3

Mathematics
1 answer:
Usimov [2.4K]3 years ago
8 0

Answer:

<u>m</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u><u> </u><u>and</u><u> </u><u>c</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>

Step-by-step explanation:

• Let's first phrase out the general equation of a line

{ \rm{y = mx + c}}

  • m is the slope
  • c is the y-intercept

[ remember that a general line equation must be in slope - intercept form as shown above ]

• from our question, we are given the equation;

{ \rm{3y + 6x =  - 3}}

• let's make y the subject in order to make the equation in slope - intercept format.

→ <em>r</em><em>e</em><em>m</em><em>e</em><em>m</em><em>b</em><em>e</em><em>r</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>p</em><em>p</em><em>l</em><em>y</em><em> </em><em>"</em><em>s</em><em>u</em><em>b</em><em>j</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>a</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em><em>k</em><em>n</em><em>o</em><em>w</em><em>l</em><em>e</em><em>d</em><em>g</em><em>e</em><em>"</em>

{ \rm{3y =  - 3 - 6x}} \\  \\ { \rm{3y =  - 6x - 3}} \\  \\ { \rm{ \frac{3y}{3}  =  \frac{ - 6x}{3}  -  \frac{3}{3} }} \\  \\  { \boxed{ \rm{y =  - 2x - 1}}}

• The above boxed equation is now a general equation. Let's extract out slope, m and y-intercept, c

{ \rm{m \:  \dashrightarrow \:  - 2}} \\  \\ { \rm{c \:  \dashrightarrow \:  - 1}}

You might be interested in
Some math help please?
Crank

Answer:

∠ LMP = 77° , ∠ NMP = 103°

Step-by-step explanation:

The 2 angles on the straight line sum to 180° , that is

∠ LMP + ∠ NMP = 180 , substitute values

- 16x + 13 - 20x + 23 = 180 , that is

- 36x + 36 = 180 ( subtract 36 from both sides )

- 36x = 144 ( divide both sides by - 36 )

x = - 4

Then

∠ LMP = - 16x + 13 = - 16(- 4) + 13 = 64 + 13 = 77°

∠ NMP = - 20x + 23 = - 20(- 4) + 23 = 80 + 23 = 103°

8 0
3 years ago
6. In the following right angled triangles, find the unknown sizes of the acute angles. Which no you can do plz do it .​
Sedaia [141]

Answer:

Here's for you...........

8 0
3 years ago
Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of
Black_prince [1.1K]

Answer:

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

Step-by-step explanation:

The Taylor series of the function <em>f </em>at <em>a </em>(or about <em>a</em> or centered at <em>a</em>) is given by

f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

To find the first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 you must:

In our case,

f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k=\sum\limits_{k=0}^{4}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

  • f^{(0)}\left(x\right)=f\left(x\right)=\frac{7}{x + 1}

Evaluate the function at the point: f\left(2\right)=\frac{7}{3}

  • f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(\frac{7}{x + 1}\right)^{\prime}=- \frac{7}{\left(x + 1\right)^{2}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime }=- \frac{7}{9}

  • f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- \frac{7}{\left(x + 1\right)^{2}}\right)^{\prime}=\frac{14}{\left(x + 1\right)^{3}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime }=\frac{14}{27}

  • f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(\frac{14}{\left(x + 1\right)^{3}}\right)^{\prime}=- \frac{42}{\left(x + 1\right)^{4}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime }=- \frac{14}{27}

  • f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(- \frac{42}{\left(x + 1\right)^{4}}\right)^{\prime}=\frac{168}{\left(x + 1\right)^{5}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime \prime }=\frac{56}{81}

Apply the Taylor series definition:

f\left(x\right)\approx\frac{\frac{7}{3}}{0!}\left(x-\left(2\right)\right)^{0}+\frac{- \frac{7}{9}}{1!}\left(x-\left(2\right)\right)^{1}+\frac{\frac{14}{27}}{2!}\left(x-\left(2\right)\right)^{2}+\frac{- \frac{14}{27}}{3!}\left(x-\left(2\right)\right)^{3}+\frac{\frac{56}{81}}{4!}\left(x-\left(2\right)\right)^{4}

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

8 0
3 years ago
what base could be written in the blank to make the exponential function model 15% decay ? y= (__1/2__) ^t\12
Helga [31]

Answer:

0.85

Step-by-step explanation:

1 - 15% = 1 - 0.15 = 0.85

y = (0.85)^\frac{t}{12}

Answer: 0.85

5 0
1 year ago
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x + 12 = 48, where x repre
Kisachek [45]
4x + 12 = 48
4x = 48 -12
4x = 36
x= 36 / 4
x= 9

Each ticket is $9.
6 0
4 years ago
Other questions:
  • Vince ran 6 laps on a track. This represented 75% of the total distance he had to run. How many total laps did Vince have to run
    12·1 answer
  • PLEASE HELP ME WITH THESE 2 QUESTIONS PLZ
    12·1 answer
  • A company's old antacid formula provided relief for 70% of the people who used it. The company tests a new formula to see if it
    8·1 answer
  • Mary invested $200 for 3 years at, 596 per
    7·1 answer
  • Convert the fraction into a decimal:35/10
    6·1 answer
  • One sound is loud and another is quieter. What must be different about these two sound waves?
    13·1 answer
  • Bettie's Boutique is having a 20% off sale.
    6·1 answer
  • Express these ratios in their simplest form <br> 8 guides to 120 tourists
    6·1 answer
  • The function f(x) = –Two-sevenths (five-thirds)x is reflected over the y-axis to create g(x). Which points represent ordered pai
    10·1 answer
  • Determine the total number of Fish food cubes that will fill the shipping box
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!