3/9 because it is the same as 1/3 or 2/6.
Area for a circle is
![A= \pi r^2](https://tex.z-dn.net/?f=A%3D%20%5Cpi%20r%5E2)
. We will fill in each area and then solve for the radius.
![530.66m^2= \pi r^2](https://tex.z-dn.net/?f=530.66m%5E2%3D%20%5Cpi%20r%5E2)
and
![\frac{530.66m^2}{3.14}=r^2](https://tex.z-dn.net/?f=%20%5Cfrac%7B530.66m%5E2%7D%7B3.14%7D%3Dr%5E2%20)
. ∴
![169=r^2](https://tex.z-dn.net/?f=169%3Dr%5E2)
and r = 13. For b,
![907.46ft^2= \pi r^2](https://tex.z-dn.net/?f=907.46ft%5E2%3D%20%5Cpi%20r%5E2)
and
![\frac{907.46ft^2}{3.14}=r^2](https://tex.z-dn.net/?f=%20%5Cfrac%7B907.46ft%5E2%7D%7B3.14%7D%3Dr%5E2%20)
.
![289=r^2](https://tex.z-dn.net/?f=289%3Dr%5E2)
, ∴ r = 17. For c,
![379.94mi^2= \pi r^2](https://tex.z-dn.net/?f=379.94mi%5E2%3D%20%5Cpi%20r%5E2)
, and
![\frac{379.94mi^2}{3.14}=r^2](https://tex.z-dn.net/?f=%20%5Cfrac%7B379.94mi%5E2%7D%7B3.14%7D%3Dr%5E2%20)
. ∴,
![121=r^2](https://tex.z-dn.net/?f=121%3Dr%5E2)
and r = 11. For d,
![1962.5cm^2= \pi r^2](https://tex.z-dn.net/?f=1962.5cm%5E2%3D%20%5Cpi%20r%5E2)
, and
![\frac{1962.5cm^2}{3.14}=r^2](https://tex.z-dn.net/?f=%20%5Cfrac%7B1962.5cm%5E2%7D%7B3.14%7D%3Dr%5E2%20)
. ∴,
![625=r^2](https://tex.z-dn.net/?f=625%3Dr%5E2)
so r = 25. And there you have it!
Answer:
A) k(x)
Step-by-step explanation:
An inverse function does the opposite to the function.
For example, if the function was "+2" then the inverse would be "-2", or if the function was "×2" the inverse would be "÷2".
An <u>inverse function</u> is a <u>reflection of the function in the line y = x</u>
Therefore (x, y) → (y, x)
(-8, 2) → (2, -8)
(-4, 3) → (3, -4)
(0, 4) → (4, 0)
(4, 5) → (5, 4)
(8, 6) → (6, 8)
Therefore, the function k(x) could be an inverse of function g(x).
Step-by-step explanation:
i need time
i hope u may understand
<h2>,...............................................</h2>